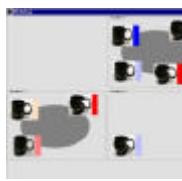


Cooperative Systems of Physical Objects

Hans Gellersen
Lancaster University



Physical Objects and Computation

- Perhaps a smart coffee cup?
- Mediacup (Karlsruhe, 1999)
- “Cooperation Added Value”

temperature watch

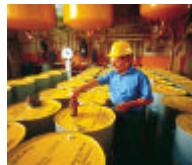
activity views

reactive doorplate

HWG 3

Smart Objects / Cooperation

- **Physical objects afford specific and limited interaction**
 - How they are handled, how they are configured
 - What they sense, what they affect is local and situated
- **Dynamic systems of smart objects**
 - Open-ended combinations
 - Potential for richer interactions, emerging use
- **Two Models**
 - Infrastructure-centric: the smartness in the infrastructure
 - Object-centric: all the smartness contained in the objects


HWG 4

Cooperative Systems of Objects

- **decentralized:** all computing embedded within the objects
- **contextualized:** preconceptions, affordances, situated use
- **variable in configuration:** resulting from physical use and movement of objects

Weight Table

Chemical Drums

Relative Positioning

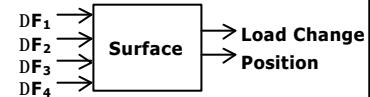
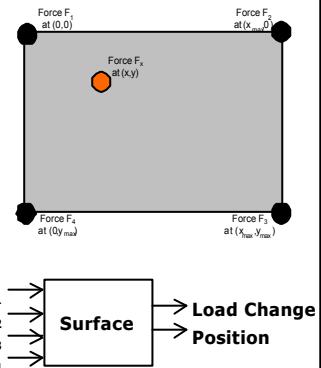
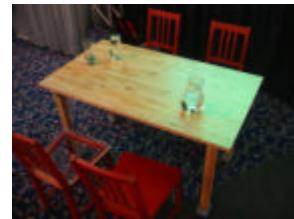
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

Ad hoc physical
interfaces

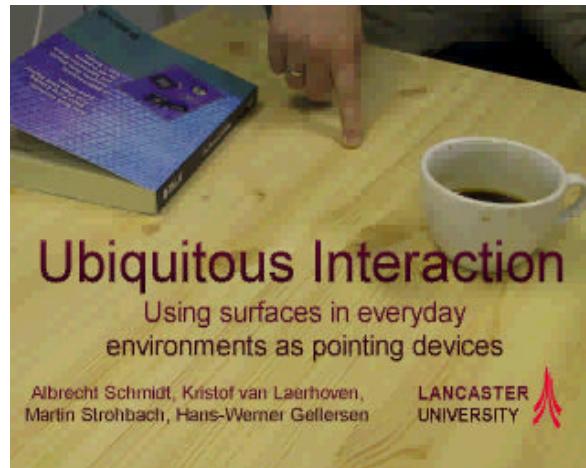
- How can objects collectively sense and reason about their environment
- How can mobile objects determine how they are arranged in space
- How can we build dynamic interfaces composed of cooperating devices

HWG 5

Weight Table




- Physical objects as a sensor network
- How can objects collectively sense more than the sum of individual observations ?
- How can we model activity in terms of objects and their state in the world ?

HWG 6


Sensing Activity on a Table Surface

- Instrument with load sensors to detect activity
- Measure load changes and where on the surface they occur
- Detect events: object placement and removal (load increase/decrease at x,y)
- Track movement on the surface: changes in load distribution

HWG 7

Weight Table Video

HWG 8

Sensing Activity on a Table Surface

How can we extend the system for identification of objects ?

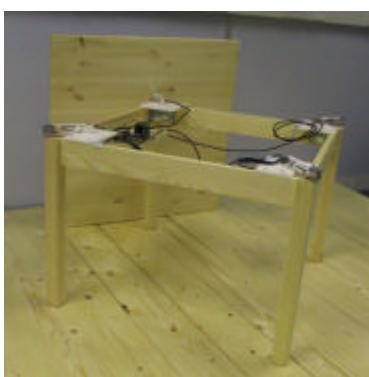
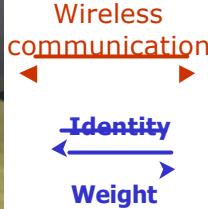
- The table surface can detect that objects are placed and removed
 - but in abstraction of what they are
- All the table knows about an object is its weight

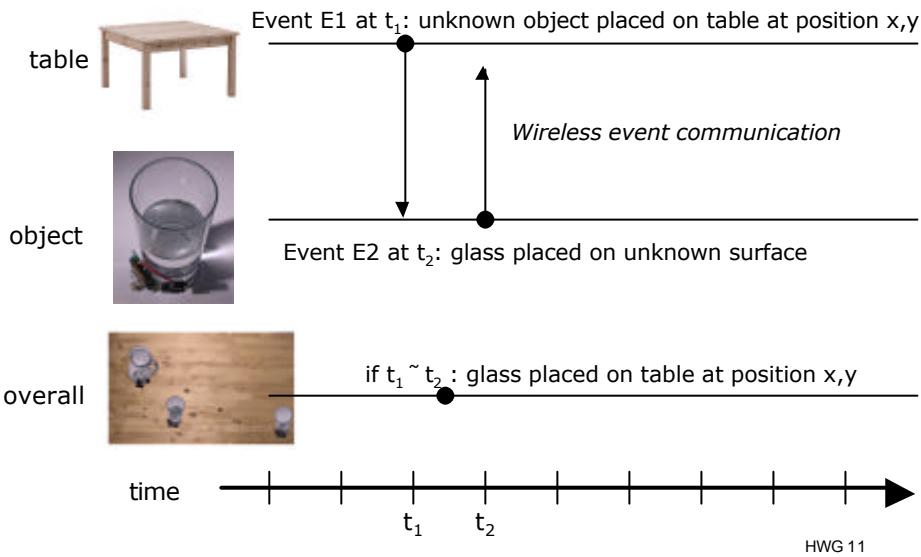
Identification requires additional information

- Background information: lookup table of weights – inherently limited and not scalable
- **Cooperation:** objects communicating their identity

HWG 9

Cooperation between Artefacts


Table contains load sensors
for object detection

Objects contain pressure
sensors for placement
detection

HWG 10

Event broadcast and correlation

Context Model

Table and other artefacts modelled with

- Built-in knowledge: identity, physical model
- Observable context
- Context that can be inferred collaboratively

Artefact	Table	Glass	Jug
Entry Type	Table	Glass	Jug
Identity	identity(id)	Identity(id)	Identity(id)
Physical Model	dimension(x,y) origin(o)	n/a	tempModel(liquid)
Observations	unknownAt(x,y,w)	onSurface()	onSurface() temperature(temp)
Inferred Entries	knownAt(A,x,y)	fillingState(f) position(refSys,x,y) weight(w)	fillingState(f) position(refSys,x,y) weight(w)


Activity Modelling in terms of Objects

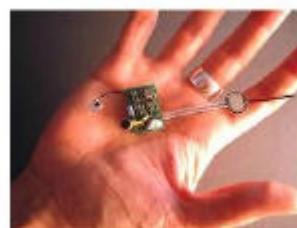
- Traditional approach to activity modelling: scene analysis to abstract out 'what is going on'
- Constructing an activity model from distributed evidence
- Modelling activity in terms of changes in the world
- Objects share evidence to each refine their own small view of the world
- Loosely coupled cooperation: objects in 'shouting range', implicit spatial scope

Chemical Drums

- Physical objects using sensors to observe their situation
- Cooperative reasoning: direct interaction to jointly assess a situation

Safety-Aware Chemical Drums

- “Storage Protocol Violations” are a major cause of accidents in the petrochemical industry
- Augment chemical drums to assess protocol compliance
 - Environmental conditions
 - Temperature, light
 - Handling and Usage
 - Shaking, dropping
 - Storage situations
 - Incompatible chemicals
 - Critical mass
 - Unapproved area



Drum ‘testbed’

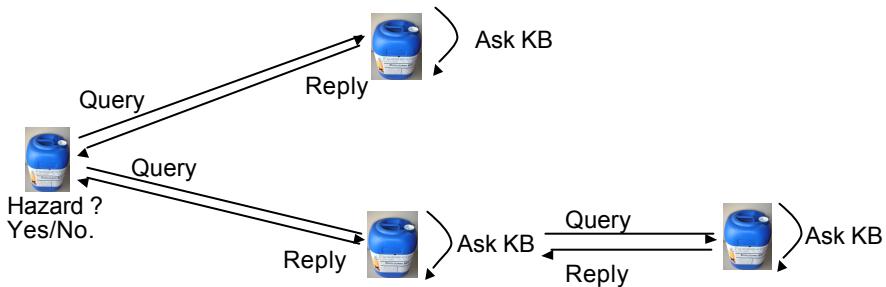
HWG 15

Technical Approach

- Instrumentation of drums
 - Sensing, ad hoc networking
- Embedding of domain knowledge (facts, rules)
 - Prolog-style
- Visual feedback

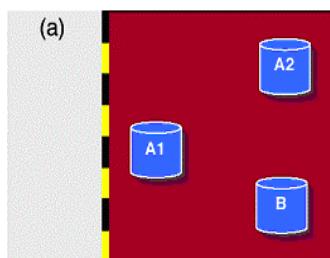
Smart-Its Computer

Safety- Aware Container



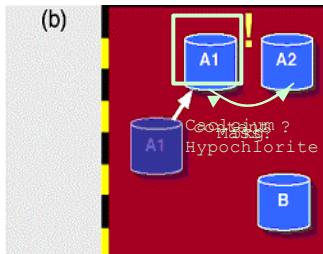
Ad hoc networked containers

HWG 16


Cooperative Reasoning

- Drums observe environmental conditions through their sensors
- Changes in the condition trigger rule evaluation
- Rule evaluation may require access to other drum's knowledge

HWG 17

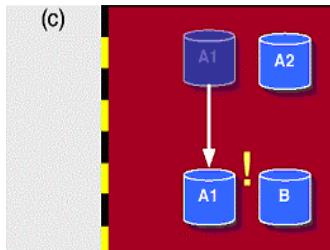

Test Scenario

Container a1	Container a2	Container b
location(me, in, 35)	location(me, in, 55)	location(me, in, 49)

HWG 18

Critical Mass Hazard


```


hazard_critical_mass :-
  content(me, CH),
  cond_sum(M1,
    (proximity(me, C), content(C, CH),
      mass(C, M1)), S),
  mass(me, M2), sum(S, M2, SUM)
  critical_mass(CH, MASS),
  MASS < SUM.

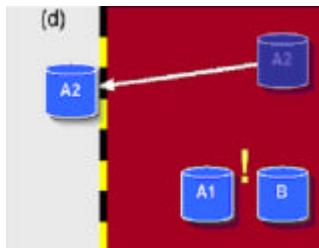
```

Container a1	Container a2	Container b
proximity(me, a2)	proximity(me, a1)	-
content(me, Ca.2ClHO)	content(me, Ca.2ClHO)	
mass(me, 5kg)	mass(me, 5kg)	
location(me, in, 71)	location(me, in, 91)	location(me, in, 85)

HWG 19

Incompatible Materials Hazard


```


hazard_incompatible :-
  content(me, CH1),
  proximity(me, C),
  content(C, CH2),
  reactive(CH1, CH2).

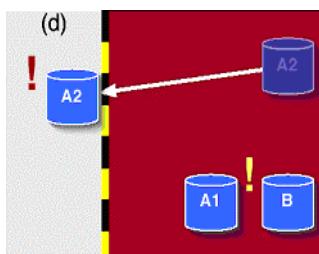
```

Container a1	Container a2	Container b
proximity(me, b)		proximity(me, a1)
location(me, in, 142)	location(me, in, 154)	location(me, in, 147)

HWG 20

Unapproved Area Warning

warning: -


```
location(me, out, T1),  
content(me, CH),  
critical_time(CH, T2),  
T1 < T2.
```

Container a1	Container a2	Container b
proximity(me, b)	-	proximity(me, a1)
location(me, in, 210)	location(me, out, 29)	location(me, in, 215)

HWG 21

Unapproved Area Hazard

After one hour:

hazard_unapproved:-

```
content(me, CH),  
critical_time(CH, T1),  
location(me, out, T2),  
T1 < T2.
```

Container a1	Container a2	Container b
proximity(me, b)	-	proximity(me, a1)
location(me, in, 3810)	location(me, out, 3629)	location(me, in, 3815)

HWG 22

Chemical Drums Video

HWG 23

Cooperative Chemical Drums

- Detection and evaluation of complex situations through ad hoc networking of physical objects
 - feasible to embed knowledge, perception and reasoning in an efficient manner
 - **no external infrastructure required**: objects are not reliant on availability of infrastructure to assess their situation
- Knowledge in the application domain maps well to the rule-based approach implemented in the chemical drums
- More explicit treatment of spatial conditions
 - spatial scoping of the reasoning process
 - requires objects to understand their spatial arrangement

HWG 24

Relative Positioning

- Wireless sensor devices cooperating to determine their spatial arrangement
- Cooperative sensing to measure distances and relative orientation

HWG 25

Location Sensing

- Most location systems provide absolute location
- Often relative spatial information sufficient
 - Proximity: who is nearby ...
 - Distance: where is the nearest ...
 - Orientation: what's left of me ...
- Conventional location systems
 - Fixed reference units and mobile 'locatables'
 - Separate roles for sender/receiver
- Relative Positioning
 - Network of peers
 - Bi-directional sensing

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

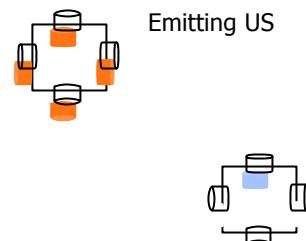
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

HWG 26

“Relate” Ultrasonic Prototypes

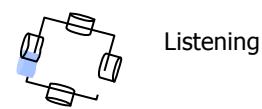
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.


- **Smart-Its Computer**
 - PIC, RFM
- **Ultrasonic sensor board**
 - Distance
 - Angle-of-arrival
- **Same architecture**
- **Packaged as USB dongle**
 - for use with mobile computers

HWG 27

Cooperative Sensing


Networking

- Decentralized management of network state (no master)
- Medium access
 - to book the ultrasound channel to emit signals
 - to broadcast recent measurements over RF
 - round robin, or event-based

Sensing

- One node emits of ultrasound pulses in all directions
- All other nodes listen on ‘one side’ (ie. one transducer)
- Repeat until listeners have taken measurements ‘on all sides’

HWG 28

Cooperative Sensing

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

- Time-slotted protocol, 13ms slots
- Broadcast own view of network state (RF)
- Broadcast measurements recently taken (RF)
- Transmit ranging pulses (US)
- Send measurements to USB host (USB)

HWG 29

Experimental Setup and Performance

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

- **90th percentile accuracy**
 - 5-9 cm distance (good vs poor line of sight)
 - 20-30° in angle-of-arrival
 - Transmission cycle ~100ms
5 devices -> updates every half second

HWG 30

Relative Positioning Video

HWG 31

Relative Positioning

- The RELATE system implementation
 - Highly accurate relative positions and reasonable orientation estimates
 - Limited range (direct sensing range $\sim 3m$), designed for 2D (with decreasing performance in non-planar arrangements)
- Close cooperation of dedicated sensor objects to determine spatial arrangement
- A general method to provide spatial information in peer-to-peer systems

HWG 32

Ad hoc Physical Interfaces

- Physical interfaces that can be composed and adapted on the fly
- Autonomous interactive objects as building blocks

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

HWG 33

Ad hoc Physical Interfaces

Fabric Interface Concept

- Dynamic arrangement of interface objects on an interface substrate
- The substrate defines the physical interface area, the inserted devices the available functions

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Afforded interactions

- Attachment of objects
- Manipulation
- Detachment

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

HWG 34

Technical Approach

Architecture

- Autonomous interface objects
 - Tiny computer with dedicated interactive capability
 - Programmable self-description
- Substrate to connect objects physically and digitally
 - Layered conductive material providing a 'flat' power and data bus
- Protocols for interface management
 - Maintaining interface configuration
 - Mediating between application and interface objects

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

HWG 35

DrumFabric Video

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

HWG 36

Fabric + Reason Video

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

HWG 37

Google Earth Video

HWG 38

Fabric Discussion

- The FABRIC system implementation
 - Hardware/software toolkit for construction of ad hoc physical interfaces (flexible substrate, range of devices)
 - Limited power and data rate, no positioning of objects
- Centralized coordination of interface objects
- Interface design as ad hoc network of interactive elements provides for very flexible use
 - Ad hoc composition, re-arrangement, adaptation

HWG 39

NEARLY THE END NOW ...

Cooperative Systems of Physical Objects

- Physical objects are becoming integrated with computing systems
- “extreme” systems: completely decentralized, with no infrastructure support for the physical objects
- Objects cooperating to model activity/situations “bottom-up”
- Cooperative sensing to determine spatial arrangement
- Coordination of ad hoc configured interface elements to provide for a new form of very dynamic physical interface

HWG 40

HWG 41

READY FOR QUESTIONS ...

Acknowledgements

- colleagues and students at Lancaster
- project partners in EQUATOR, RELATE and COBIS
- Funders: EPSRC, EC.

HWG 42