A tissue-conductive acoustic sensor applied in speech recognition for privacy

P. Heracleous, Y. Nakajima, H. Saruwatari, K. Shikano

Nara Institute of Science and Technology, Japan

•

- Non-Audible Murmur (NAM)
- NAM characteristics
- NAM automatic speech recognition
 - □ Recognition in clean environments
 - □ Recognition in simulated noisy environments
 - □ Recognition in real environments
- Effect of Lombard reflex in NAM recognition
 - □ Lombard characteristics
 - □ Experiments using Lombard data
- Conclusions

Non-Audible Murmur (NAM)

Definition

- A terminology, which describes unvoiced speech received by a NAM microphone through body tissue.
- ☐ It produced with the vocal cords not vibrating.
- ☐ It originates from a turbulent noise generated in and above the larynx.
- It can be considered as soft whisper, or small voice.
 Sound level about 32-35 dB SPL.

Attachment of NAM microphone

•

Non-audible murmur characteristics

Audible speech received by NAM microphone

Non-audible murmur

- Body transmission and loss of lip radiation act as low-pass filter
- Lower intelligibility and quality.
- After 1kHz the spectral components are attenuated. After 3kHz remain flat.
- Enough information to distinguish and recognize sounds.

4

NAM recognition in clean environment

- Privacy in human-machine communication
- Normal-speech HMMs cannot be used
 - Feature distortions
- HMMs trained with NAM database are necessary
- Using speaker and environment adaptation techniques
 - ☐ Maximum Likelihood Linear Regression (MLLR)
 - □ Maximum A Posteriori (MAP
 - Iterative approach

- Clean training NAM data

5

- Clean test NAM data
- Multi-iterative MLLR
- High performance

-350 NAM training utterances, 48 NAM test utterances

NAM recognition in simulated noisy environments Captured noise Clean NAM data Office noise Superimpose Simulated noisy NAM NAM microphone attached to a user Loud-speaker 78 -Training data: 350 clean NAM utterances 50 40 30 - MLLR and MAP adaptation techniques - 48 simulated noisy test data - Japanese dictation task 20 - 20k vocabulary 6 Noise level MA1

NAM recognition in real noisy environments

□ 5 m

13.7

12.5

EL4

1113

465

7

NAM recognition Real environments

Noise

- -Adaptation approaches
- -100 training utterances recorded in clean environment
- -24 test utterances recorded in real environment

In real environments, with increasing noise level word accuracy decreases

Lombard Reflex (or effect)

- When speech is produced in the presence of noise, speech characteristics change [Lombard, 1921]
 - □ Intensity (or power, or loudness) increases
 - □ F0 (or pitch) contour changes
 - Formants shift
 - Phrase durations increase
 - Spectral tilt changes

Talker is listening to noise while NAM is uttered

Lombard reflex affects speech recognition

- Performance decreases not only by the presence of noise, but also due to speech characteristics changes.
- The effect of Lombard reflex is strongly individual
 - How talker cope with the noise
 - □ Different noise causes different changes in speech characteristics

•

Lombard reflex Duration changes

Vowel /a/ Clean

Vowel /a/ 75dB SPL

Vowel /o/ Clean

Vowel /o/ 75dB SPL

Lombard speech: Listener while talking listens to noise using ear-phone The changes in duration can be seen and be heard.

Lombard reflex Spectral changes

It can be seen in Lombard speech:

- -Intensity increases. Talker's vocal tract efforts increase in order to increase the speech intelligibility
- -Mismatch in speech recognition. Performance decreases

11

Lombard reflex in NAM recognition

- 50 dB SPL Intensity is increased.
- 60 dB SPL Intensity is further increased. Still NAM??
- 70 dB SPL Already differs from NAM. Vocal cords vibrations.
- 80 dB SPL This is not NAM!!! Vocal cords are vibrating. F0, formants are detectable.

Lombard NAM speech at 80 dBA SPL noise level. Normal speech characteristics 12

Lombard baseline experiment

- 50 training utterances, 24 test utterances from a female speaker
- MLLR adaptation using 3000-states PTM HMMs
- Analogy between real noisy experiment and Lombard experiment

13

Conclusions - Future Work

- Introduction to Non-Audible Murmur
 - NAM microphones
 - □ NAM frequency characteristics
- Non-Audible Murmur recognition
 - ☐ Clean environment: 93.9% word accuracy
 - ☐ Simulated noisy test data: Shows robustness
 - □ Real noisy test data: Performance decreases
- Investigating the effect of the Lombard reflex
 - ☐ Markedly affects non-audible murmur recognition