Analyzing Features for Activity Recognition

Tâm Huynh and Bernt Schiele
Multimodal Interactive Systems
TU Darmstadt
Germany
[huynh,schiele]@mis.tu-darmstadt.de

Activity Recognition using
Wearable Sensors

- Basic Activities (Movements)
 - Walking, Standing, Sitting, Jogging, etc.
 - Clearly defined by motion of body parts
 - Well-suited for recognition with acceleration sensors
Steps in Recognition

- Sensing
 - Conversion from physical inputs to signal data
 - e.g. human motion to acceleration signal

- Feature Extraction
 - Measuring of signal properties useful for classification
 - e.g. mean, variance

- Classification
 - Assignment of the sensed data to a category
 - e.g. “Walking”
Motivation

- Features for Recognition - a common approach:
 - For all activities:
 - ... take a fixed set of features and
 - ... compute them on fixed window lengths

![Example of Acceleration Signal](image)

- Walking
- Jogging

Outline

- Motivation
 - Choosing Features and Window Lengths
- Experimental Setup
 - Hardware
 - Data Set
- Evaluation
 - Features
 - Windows
- Summary & Outlook
Motivation

- Can we do better if we select features and window lengths separately for each activity?

Hardware & Data Set

- Recordings by Intel Research, Seattle
 - Integrated sensor board attached to shoulder
 - Sensors for 3D-acceleration, audio, IR/visible light, temperature, compass, barometric pressure, humidity
 - 200 min of Basic Activities
 - Walking, standing, jogging, skipping, hopping, sitting (in a bus)
Features

- One-dimensional features computed over acceleration signal
 - Mean [e.g. Ravi05, Intille04, Kern03]
 - Variance [e.g. Ravi05, Heinz03, Kern03]
 - Energy [e.g. Ravi05, Intille04]
 - Spectral Entropy [e.g. Intille04]
 - Pairwise correlation b/w axes [e.g. Ravi05, Intille04]
 - FFT coefficients [e.g. Intille04]
- Each feature computed over five different window lengths
 - 0.25, 0.5, 1.0, 2.0 and 4.0 seconds

Data Analysis

- Goal
 - For each activity, analyze combinations of
 - Feature
 - Window length
 - Evaluate relative recognition performance
- Approach: Cluster Analysis
 - Cluster Precision as an indicator for relative recognition performance
Cluster Analysis

- Judge quality of a (feature, window length) combination by looking at how well it clusters activities.
- K-means clustering in feature space.
- For each cluster, compute precision p as indicator for cluster homogeneity.

 \[
 \begin{align*}
 \text{Activity 1} & : p_1 = 1, p_2 = 0 \\
 \text{Activity 2} & : p_1 = 0, p_2 = 1 \\
 & : p_1 = 2/3, p_2 = 1/3
 \end{align*}
 \]

- Overall precision p for an activity = weighted average over precision for individual clusters.

 $p(\text{activity}) \leq 1$; 1 is best.

Cluster Precision vs. Recognition

- Is cluster precision an indicator for recognition performance?
 - Comparison of cluster precision to results of a simple classifier.
 - Nearest cluster centroid.
 - Variation of distance threshold to obtain ROC curves.
 - Cluster precision seems to correlate with recognition performance:
 - Activity: walking
 - Feature: variance of acceleration
 - Window sizes: 0.25, 0.5, 1.0, 2.0 and 4.0 seconds
Results - Features

• Cluster Precisions of five activities:

- Walking
- Jogging
- Standing
- Skipping
- Sitting (in a Bus)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Jogging</th>
<th>Standing</th>
<th>Skipping</th>
<th>Walking</th>
<th>Sitting (in a Bus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Spectral Entropy</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Axis Correlation</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>FFT Bands</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>FFT Coefficients</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- No single 'best' feature for all activities
- FFT features and Variance do consistently well

Results - FFT Features

• Walking: Cluster Precisions for different window lengths of FFT features
Results - FFT Features

- Clear differences b/w high- and low-intensity activities
- Crucial which coefficient/ window length is chosen

Results - Window Lengths

- No single best window length when looking at average
- Significant gains in precision when choosing features and window length individually for each activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Window Lengths</th>
<th>Cluster Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking</td>
<td>Variance/ 1 sec</td>
<td></td>
</tr>
<tr>
<td>Jogging</td>
<td>FFT coeff. 5+6/2 sec</td>
<td></td>
</tr>
<tr>
<td>Skipping</td>
<td>FFT coeff. 2+3/2 sec</td>
<td></td>
</tr>
<tr>
<td>Sitting</td>
<td>FFT band 3/2 sec</td>
<td></td>
</tr>
<tr>
<td>Standing</td>
<td>FFT coeff. 13+14/0.5 sec</td>
<td></td>
</tr>
</tbody>
</table>

Window lengths: 0.25, 0.5, 1.0, 2.0, 4.0 seconds
Summary

- Analysis of single features/window lengths for basic activities
 - Cluster precision as indicator for recognition performance
- Results
 - Features
 - No single ‘best’ feature for any activity
 - FFT features often perform well
 - But different coefficients for different activities
 - FFT bands might be compromise to individual coefficients
 - Variance does consistently well
 - Mean is less discriminant than variance
 - Window Lengths
 - No single ‘best’ length for all activities
 - For best results, choose an individual (feature, window length)
 combination for each activity

Outlook

- Current and future work
 - Extend approach to more activities
 - Use more sensors and a larger set of features
 - Apply more elaborate classifier scheme (SVM, AdaBoost, ..)
Thanks

... Questions?

Activity Recognition using Wearable Sensors

- Context Awareness plays a central role in ubiquitous computing
- Activity is an integral part of a user’s context
- Wearable Sensors are well-suited for recognizing basic activities
 - E.g. Walking, Standing, Sitting, etc.
 - Acceleration sensors are small enough to be integrated into phones, watches, clothes, etc.
Cluster Analysis

- Judge quality of a (feature, window length) combination by looking at how well it clusters activities
- Calculate precision p as an indicator for how homogeneous the clusters are
 - Best case: $p = 1$
 - Worst case: $p = \text{a priori probability of activity}$

Cluster Precision

- Example: Cluster Precision of Activity 1

\[
p = \frac{8p_1 + 2p_2}{8+2} \approx \frac{3}{4}
\]
Cluster Precision vs. Recognition

- Is cluster precision an indicator for recognition performance?

 Example: Walking

```
(feature, window size):
  - (acceleration FFT coeff. 2+3, 1.0 sec)
  - (acceleration FFT coeff. 1+2, 0.5 sec)
  - (acceleration variance, 1.0 sec)
  - (acceleration FFT bands, 2.0 sec)
  - (acceleration FFT coeff. 7+8, 2.0 sec)
```

Results - Window Lengths

```
Walking
  - 0.25
  - 0.5
  - 1.0
  - 2.0
  - 4.0 seconds

Jogging

Standing

Skipping

Sitting (in a bus)
```