RFID middleware design – addressing application needs and RFID constraints

Christian Floerkemeier, Matthias Lampe

Institute for Pervasive Computing, ETH Zurich

Classical RFID Application landscape

- Single tag in range
- Coarse reader deployment
- 1-to-1 relationship between reader and application
 - RFID data are captured by single reader
 - consumed by a single application
This is changing in novel application domains: Supply chain

- Warehouse management
 - Update inventory
- Supply chain execution
 - Generate dispatch advice
- Pick & Pack Helper
 - Check pick list
- Regulatory compliance
 - Update pedigree

Future application landscape

- 1000s of tags in range
- Dense reader deployments
- n-to-n relationship between readers and applications
 - RFID data are captured by multiple readers
 - consumed by various applications
Need for RFID middleware

- Decouple reader and application

- Detailed requirements?
 - Application needs
 - RFID constraints
Application need for filtered and aggregated data

- Filtered
 - by reader and tag data

- Aggregated, e.g.,
 - Entry/exit events
 - Counts

Other application needs

- Support different notification latencies
 - Very short, where real-time updates are required
 - slow, where IT systems only daily receive batch updates

- Read-write to tags
RFID Constraints – Limited bandwidth

- UHF in Europe:
 - 15 channels only
 - 10 channels with 2 W ERP
 - 96dB listen-before-talk

- HF
 - Single channel only
 - but more favorable propagation characteristic

This implies that the complete decoupling of reader and application is not desirable.

Readers need to know about the data desired by the application:
 - To switch themselves off
 - To address a specific tag population
Other RFID constraints

- Heterogeneous reader landscape
 - Minimum computing capabilities vs full PC capabilities
- Tag memory organization varies

RFIDStack

- RFID middleware developed to address the application needs and RFID constraints
 - based on a publish-subscribe messaging service that provides full content-based routing
 - Elvin by Mantara
Related Work

- Savant, WinRFID
 - Focus on dealing with idiosyncrasies of different readers
 - Limited functionality addressing constraints of passive RFID

- Commercial products, e.g., SAP Auto-ID infrastructure
 - System monitoring
 - Strong focus on interpretation of RFID data in business context

- RFID reader interface standardization (EPC reader interface, SLRRP)
Conclusion

- RFID middleware should address both application needs and RFID constraints
 - If you neglect the limitations of RFID, the quality of the captured data will suffer

- Full content-based routing systems that support quenching are well suited to address these challenges