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Wearable Activity Recognition

wearit@work

“Recognizing Workshop Activity 
Using Body Worn Microphones and Accelerometers”
Pervasive ='04

• Assembly and maintance a key 
wearable application

• Activity recognition and tracking
– Automatic manuals
– Hazard prevention, etc.



3

? Motivation 
? Overview of experiment
? Sound & acceleration
? Classifier combination
? Evaluation 
? Conclusion

Woodshop Scenario

? 9 woodwork tool activities
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'get saw from drawer'
'cut wood with saw'
'put saw back in drawer'
..
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Woodshop Scenario

? 9 woodwork tool activities
? Fixed sequence:

..
'get saw from drawer'
'cut wood with saw'
'put saw back in drawer'
..

? Wrist mounted microphone & 
accelerometer (3-axis)

? 5 subjects
? 20 experiment sets

Typical sequence 'ground truth'

saw

drawer
vise

drill

drawer

hammer

drawer

screw

Segmentation problem:
Difficult to model 'Null' activity

Classify using sound
and acceleration signals

Use combination!

~46% = Null class
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Classification of Sound

• Frame-by-frame 
– Moving window over 

continuous data (100ms)

Audio
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Classification of Sound

• Frame-by-frame 
– Moving window over 

continuous data (100ms)
– Spectrum pattern matching
– Linear Discriminant Analysis
– Distance from class means

FFT

LDA

Audio

( 256 dim. FFT vector )

( 9 classes 
=> 8 dim. LDA vector )

• Larger moving window (2 seconds)
– Mean of LDA distances 
– Classify using Min. Distance

Class Dist.

FFT

LDA

Audio

Class Dist.

Classification of Acceleration

Features

Accel. x,y,z
• Features

– Peak count and mean 
– Mean and variance of raw data
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FFT

LDA

Audio

Class Dist.

Classification of Acceleration

Features

HMM

Accel. x,y,z
• Features

– Peak count and mean 
– Mean and variance of raw data

• Moving window (2 seconds)
– Hidden Markov Model (HMM)
– Class likelihoods

FFT

LDA

Audio

Class Dist.

Classification of Acceleration

Features

HMM

Accel. x,y,z
• Features

– Peak count and mean 
– Mean and variance of raw data

• Moving window (2 seconds)
– Hidden Markov Model (HMM)
– Class likelihoods
– Classify using Max. Likelihood

Likelihood
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Typical prediction output: 
sound and acceleration

Confusion matrix from all 
sound data

Zero true negatives
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Errorbar summary from all 
sound data

Zero true negatives

~46% ground truth total == Null class

% True positive time

% Substitution time

% False positive time

Errorbar summary from 
Acceleration & Sound

~46% ground truth total == Null class

% True positive time

% Substitution time

% False positive time
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Typical prediction output: 
sound and acceleration
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Combination #1: Comparison of 
top choices

disagreementDeletion

A 'softer' combination using 
class rankings

Sound 

Class Dist.

Acceleration

Likelihood

Class 
rankings

Class 
rankings

... ...

class hammer vise file drill ..
sound rank 1 3 2 4 ..
accel.  rank 2 1 4 3 ..

e.g. over a 2 second window.. Not directly
comparable!
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A 'softer' combination using 
class rankings

Class 
rankings

Class 
rankings

Sound 

Class Dist.

Acceleration

Likelihood

... ...

Combined 
rank.

class hammer vise file drill ..
sound rank 1 3 2 4 ..
accel.  rank 2 1 4 3 ..
comb. rank 1 2 3 4 ..

e.g. over a 2 second window..

A 'softer' combination using 
class rankings

Class 
rankings

Class 
rankings

Sound 

Class Dist.

Acceleration

Likelihood

... ...

Combined 
rank.

“Decision combination in multiple classifier systems”
- Ho et. al, TPAMI '94

class hammer vise file drill ..
sound rank 1 3 2 4 ..
accel.  rank 2 1 4 3 ..
comb. rank 1 2 3 4 ..

e.g. over a 2 second window..

• Method based on Logistic regression (LR)
– account for common rank combinations
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Combination #1: ranking fusion 
using LR

Deletion

? Motivation 
? Overview of experiment
? Sound & acceleration
? Classifier combination
? Evaluation 
? Conclusion



15

Results for Comparison and LR

% True positive time

% False Null' time
% Substitution time

% False positive time

% True 'Null' time

~46% ground truth total == Null class
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Results for Comparison and LR

% True positive time

% Substitution time

% True 'Null' time

~46% ground truth total == Null class

Error rate 

~30%
~34%

% False Null' time

% False positive time

Closeup of errors

sawing

vise

Overfill

Underfill

Deletion Insertion
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Results for Comparison and LR

% True positive time

% True 'Null' time

~46% ground truth total == Null class

% 'Deletion' time
% Substitution time

% 'Insertion' time

% Overfill time
% Underfill time

~30%
~34%Serious Error Level 

(% SEL)

~7% ~9%
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Conclusion

• Single wrist-worn microphone and accelerometer sufficient to 
recognise hand and tool activities
– provided activity has corresponding motion and sound

– combine sound and acceleration classifiers to detect Null

• Time-based evaluation of continuous recognition
– confusion matrix inacurate for certain evaluation criteria

– suggest use of 'minor error' categories: Overfill and Underfill

Conclusion

? Questions?
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