

Printing Processes and their Potential for RFID Printing

Anne Blayo and Bernard Pineaux, EFPG

1 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Outline

- General considerations
 - Why using printing processes ?
- The main printing processes
 - Offset
 - Flexography
 - Gravure
 - Screen printing
 - Digital printing
 - Ink jet
 - Electrophotography
- Conclusion

→

- ✓ Main characteristics
- ✓ Technical description
- ✓ Specific performances,
regarding RFID production

2 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

General considerations

- The origin of the development of printing processes
 - The growing need for information in large volumes and at low price (around 1450, J. Gutenberg, letterpress, mobile movable types, and the associate printing ink)
- Growing interest to use the graphic arts printing platform :
 - Low cost
 - Efficient way of reproducing text and images, and more generally identical patterns, on various substrates, with different colours...
 - Capability of superimposition of very small patterns
 - Possibility of producing electronic elements in-line (“smart packaging”, RFID...)

3 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

General considerations

- The choice of a printing process depends on :
 - The number of runs
 - The nature of the surface : paper, board, polymer, metal ...
 - The nature of the liquid (or paste) to be deposited :
 - Choice of specific **functional inks**
 - The cost
 - The different steps in the production process
- Requirements for printing electronic components
 - Accuracy of position
 - Amount of material deposited, e.g. thickness and content of active materials
 - Resolution

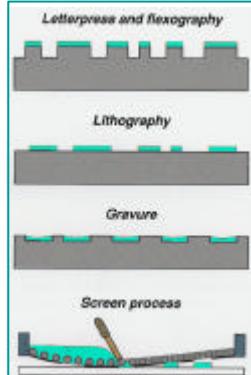
4 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

General considerations

- Types of functional inks
 - **Conductive inks**
 - Inks containing dispersions of conductive particles (Ag, C,...)
 - Inks based on conductive polymers
 - **Other functional inks**

↳ Similarities with “conventional“ printing inks :

- ⇒ Colloidal suspensions of pigments in liquids of various viscosities
- ⇒ Must form a continuous dry film, immediately after printing
- ⇒ Must resist to wear, solvent, light...


General considerations

- Application areas in electronics :
 - **Printing circuits boards**
 - **Production of displays (OLED)**
 - **RFID**
 - **....**

Printing processes

“Conventional processes” (with a printing form)

Digital printing processes (no printing form)

« From the computer
to
the substrate »

7 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Printing processes

“Conventional processes” (with a printing form)

“flat” processes

Offset
Screen printing

engraved processes

Gravure
Intaglio

“in relief” processes

Flexography
Letterpress

Digital printing processes (no printing form)

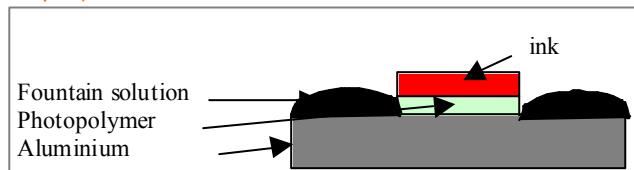
Ink jet

DOD or CIJ

Electrophotography

8 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

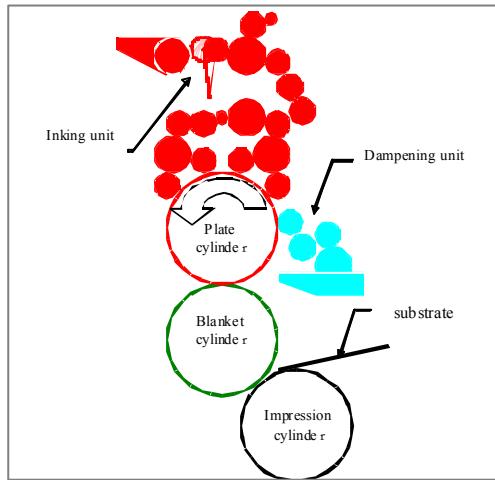
Offset


- The most widespread printing process for publication
 - 80 % of publication printing
- Wide variety of materials :
 - Papers, board, metals, polymers...
- Middle to long runs :
 - from 500 to 50.000 copies on sheet-fed presses
 - from 10.000 to 1 million copies on web-fed presses

9 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Offset

- « Flat » process
 - Aluminium plate (thickness $\approx 0.3\text{mm}$) + photopolymer layer (thickness $\approx 1\mu\text{m}$)



- Very viscous inks ($\eta \approx 10 \text{ Pa.s}$), with a low polarity
- Based on the antagonism of ink and water
- Double transfer

10 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Offset

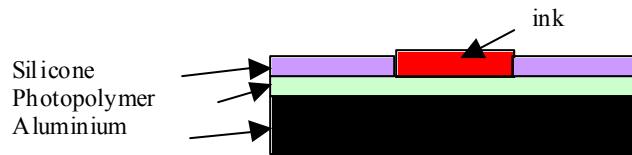
1 . Wetting of the plate with the dampening solution

$$\gamma_{\text{image areas}} \approx 35 \text{ mJ/m}^2$$

$$\gamma_{\text{non-image areas}} \approx 70 \text{ mJ/m}^2$$

2. Inking of the printing areas

$$\gamma_{\text{ink}} \approx 35 \text{ mN/m}$$


$$\gamma_{\text{dampening sol.}} \approx 25 \text{ to } 55 \text{ mN/m}$$

11 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Offset "Waterless"

- Offset without dampening solution
 - Dampening solution replaced by silicone (PDMS)

- Better stability of the process
 - (provided the temperature is constant)
- Possibility of reproducing smaller dots and finer lines

12 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

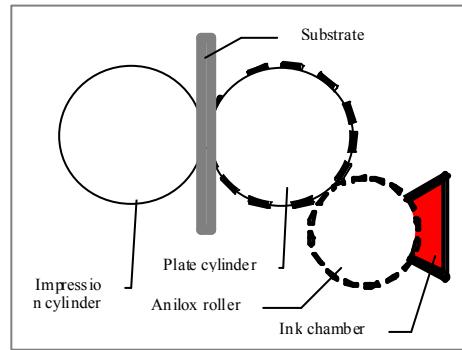
Offset

From « the Print Production Manual », 8th ed. PIRA, ed. by Michael Barnard, 1998

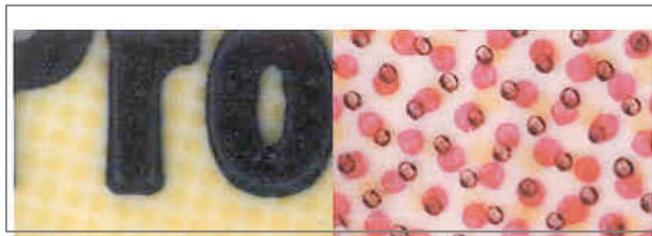
- Lateral resolution : 15µm
↳ up to 200lines/cm, in waterless offset
- Ink film thickness : 0.5 to 3 µm
- Ink viscosity : 1 to 50 Pa.s

13 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Flexography


- Printing process initially developed for packaging applications
- Various run length, from several 1000s
- Many substrates
 - Papers, board (including corrugated), polymer films...

14 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble


Flexography

- Direct process, using a relief flexible plate : flexible photopolymer (thickness \approx 1 to 5 mm)
- Liquid inks ($\eta \approx$ 10 to 100 mPa.s)
 - Water-based
 - Solvent-based
 - UV-curing

15 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

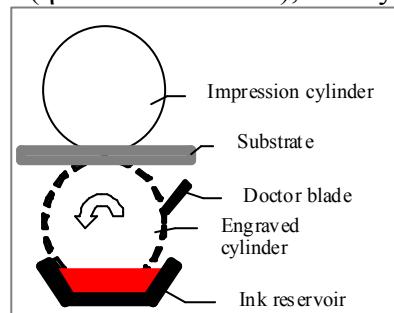
Flexography

From « the Print Production Manual », 8th ed. PIRA, ed. by Michael Barnard, 1998

- Lateral resolution : 40 μm
↳ up to 60 lines/cm,
- Ink film thickness : 6 to 8 μm
- Ink viscosity : 0.01 to 0.1 Pa.s

16 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

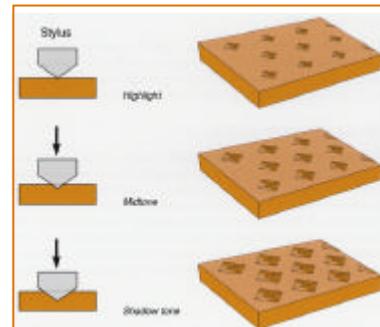
Gravure


- Significant process in publishing and packaging
 - 18 % of publication
- Adapted to very long runs
 - Over 500 000 impressions
- Various substrates
 - Thin light coated papers, polymer films, board...

17 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Gravure

- Intaglio process
 - Steel-based cylinder, covered with a thin nickel layer, then electrochemically covered with a thick copper layer. This layer is electromechanically engraved, and covered with a thin chrome layer (2-3 μ m), which improves resistance to wear and hardness
- Liquid inks ($\eta \approx 10$ to 50 mPa.s), mainly solvent-based



18 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Gravure


Resulting cells' depth \approx up to 40 μm

19 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

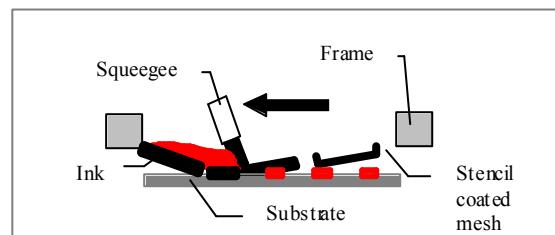
Gravure

From « the Print Production Manual », 8th ed. PIRA, ed. by Michael Barnard, 1998

- Lateral resolution : 15 μm
- up to 1000 lines/cm, with laser engraved cylinder
- Ink film thickness : 8 to 12 μm
- Ink viscosity : 0.01 to 0.05 Pa.s

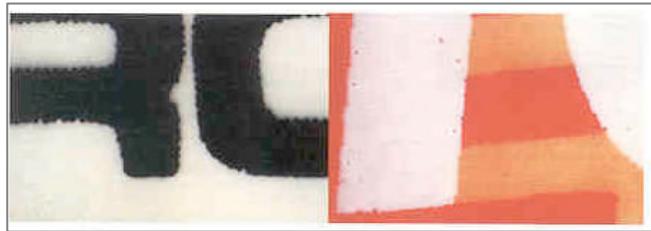
20 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Screen printing


- Printing process already efficient for printed circuits
- Short runs, slow process
- Allows to print thin to very thick ink films (up to 100µm)
- Many substrates
 - Papers, board (including corrugated), polymer films, metal surfaces, textile...

21 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA1 - 12th October 2005, Grenoble

Screen printing


- Stencil process
 - The ink is transferred through a stencil covering a fine fabric mesh of threads
 - The ink is poured on the stencil and a squeegee forces the ink through the stencil
- Ink viscosity \approx 0.1 to 10 Pa.s

22 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA1 - 12th October 2005, Grenoble

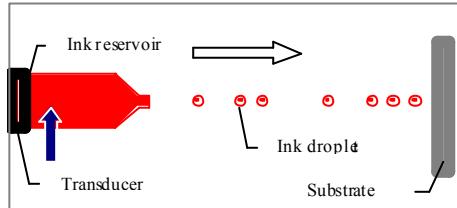
Screen printing

From « the Print Production Manual », 8th ed. PIRA, ed. by Michael Barnard, 1998

- Lateral resolution : 100 µm
↳ under 50 lines/cm,
- Ink film thickness : 1 to 100 µm
- Ink viscosity : 0.1 to 10 Pa.s

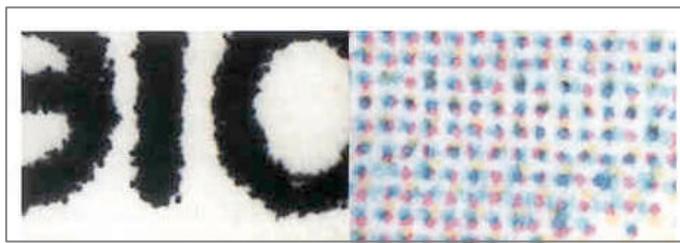
23 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Ink jet


- The most developing printing process in the last 10 years
- Digital, non impact printing process
 - Print directly from the computer data to virtually any substrate
- Any substrate, of any size
- Very versatile process, very short runs (from unit) to 1000s
- Already used in microtechnologies

24 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Ink jet


- Two main techniques :
 - Drop-on-Demand
 - Continuous Ink Jet
- Size of the droplets ejected by the nozzle : a few pL
 - Drop diameter $\approx 20 - 30 \mu\text{m}$
- Very fluid inks : $\eta \approx 10 \text{ mPa.s}$
 - Water-based
 - Solvent-based
 - UV-curing
 - Hot-melt (solid at room temperature, liquid when jetted)

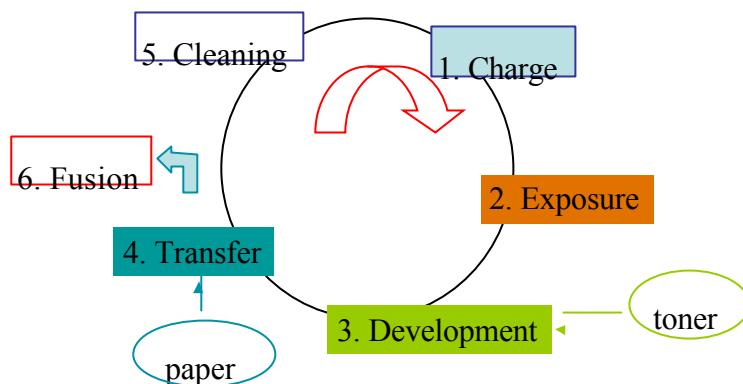
25 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Ink jet

From « the Print Production Manual », 8th ed. PIRA, ed. by Michael Barnard, 1998

- Lateral resolution : $50 \mu\text{m}$
- limited to 60 lines/cm,
- Ink film thickness : depends on ink properties
- Ink viscosity : $\approx 10 \text{ mPa.s}$

26 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble


Electrophotography

- Process in evolution and extension
- No printing form
- Limited to short runs
- Liquid or solid toners
- Papers (coated or not), polymer films...
- Applications in RFID printing ???

27 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Electrophotography

28 - Printing processes - A.Blayo and B. Pineaux - sOc-EUSA - 12th October 2005, Grenoble

Conclusion

- Any printing method could be used for printing antenna
- Common methods for RFID printing : screen and ink-jet printing, but:
 - Cannot be used for very high volume
 - Difficulties of resolving fine lines in screen printing
 - Satellites drops may occur in ink jet printing
- Still to be studied :
 - The nature of the inks, and their properties (rheological, physico-chemical, and functional properties)
 - The effect of the substrate properties : roughness, porosity, electrical properties...
 - The interactions between conductive inks and substrates
 - The conditions of printing : pressures, drying mechanisms

Thank you for attention