
Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 5 3

Text Input Disambiguation Suppor ted on a Hierarchical User Model

Carlos Bento and Nuno Gil

Centro de Informática e Sistemas da Universidade de Coimbra
Polo II da Univ. de Coimbra

bento@dei.uc.pt - nuno@gilito.com

Abstract

Mobile phones are used for various tasks that go far from
voice communication. A popular use is for composition of
short messages (SMSs), but other applications are also
available like email, agenda, contact, and note management.
All these uses have in common the need for text input on a
small keyboard with ambiguity problems.

Various techniques are currently used for input
disambiguation, with variable results in terms of usability and
efficiency. Some techniques achieve good performance with
messages composed by words from a dictionary but poorly
when a significant number of words are not in memory.

In this paper we present a solution for text disambiguation
supported on a general model for disambiguation plus a user
model generated from previous messages sent by the user. We
present results obtained with this approach and discuss future
improvements.

1. Introduction

The use of Short Message Services (SMS) is an important
source of revenue for the mobile communication industry.

With the growth in the processing capacity of mobile
terminals, several new applications have emerged. For many
of these applications the success depends on the availability
of efficient ways for text input in 12-key phone keyboards.
This is especially true for applications that involve
composition of long sequences of text like when preparing
emails or writing notes.

In general, current devices incorporate one or both of two
groups of text input techniques [1]: pen-based and key-based.

1 2
abc

3
def

4
ghi

5
jkl

6
mno

7
pqrs

8
tuv

9
wxyz

* 0 #

Figure 1: Twelve keys ambiguous keyboard.

The first one, more common in Personal Data Assistants

(PDAs), makes use of one “pen” and a sensitive screen
allowing inputting text in two different ways: on a virtual
keyboard that shows up on the terminal screen or drawing the
symbol that must be recognized as the letter we want to write.

The key-based approach, more common in mobile
phones, can be implemented on complete keyboards, i.e.
keyboards with one key for each letter (e.g. Nokia 9110
Communicator) and ambiguous keyboards, namely 12-key
phone keyboards, in which each key is assigned to three or
four different letters (e.g. Nokia 7110).

The focus of our research is on the second group of input
systems: ambiguous keyboards. Fig. 1 shows the usual aspect
for these keyboards.

The way letters are disposed is defined by international
standards1, so independently of the language of use all users
have the same ambiguities on their keyboards.

The typing process in such devices involves pressing each
key one or more times until the desired letter is retrieved. The
number of times one key has to be pressed depends on the
sequence of letters predefined for this key. For instance, to
write the letter y the 9 key has to be pressed three times. This
simplified way of entering text is called multi-tap [2], since we
need to tap several times each key to obtain the desired letter.

Fig. 2 represents the sequence of keys that need to be
pressed to write the word “terminal” using the multi-tap
technique.

8 33 777 6 444 66 2 555
t e r m i n a l

Figure 2: Sequence of pressed keys to write terminal with
multi-tap.

Using the multi-tap technique we would need to press the

keys 16 times to write this 8 letters word. Luckily, there are
several intelligent techniques that allow writing text with a
much smaller number of key strokes.

The most known technique is T92 [3]. This technique is
based on a dictionary. Working with T9 is quite simple,
although some training is necessary. The user just needs to
press one time each key associated to the letter that s/he wants
to write. The system progressively tries to find the words (or
part of the words) in the dictionary that include letters
associated to the keys that were pressed so far.

If all the keys were pressed and the word retrieved from
the dictionary is not the one that we want, a special key must
be pressed to retrieve the other possible words, and hopefully,
the desired word will be presented.

To write words that are not in the dictionary, it is
necessary to turn off the intelligent writing and write as
described for the multi-tap technique. In recent
implementations of T9, the system integrates the new words
in the dictionary.

In Fig. 3 we represent the writing sequence of the word
“terminal” using T9 with an English Language dictionary.

1 ITU E.161 ou ANSI T1.703-1995/1999 ou ISO/IEC 9995-8:1994.
2 Acronym for text on nine keys.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 5 4

 key result

8 t
3 ve
7 ter
6 term
7 termi
6 vermin
2 termina
5 terminal

Figure 3: Sequence of pressed keys to write terminal with T9.

In this picture it is patent that only 8 key-presses were

necessary to write this 8 letter word.
Being T9, the technique with the strongest market share,

there are other techniques competing with it namely eZiText
[4], iTap [5] and LetterWise [6].

There are also other approaches that are not so well
known. Some of them are based on software key
disambiguation like Less-Tap [7] and HMS [8], and
techniques in which the disambiguation is performed by the
use of extra keys like chording keyboards [9], or by the use of
inertial sensors like TiltText [10].

Systems based on a dictionary such as T9 have important
limitations [11] like the lack of several common words in the
dictionary; no slang words in the dictionary; the need to
visually follow writing, the need to switch between language
databases, and the need for teaching new words manually.

A well known disambiguation technique that is not based
on a dictionary is LetterWise [12]. Instead of a dictionary it
calculates probabilities that are used to guess the next letter to
be written having in consideration what was written so far
(the prefix).

For instance, if we want to write the word the and we
have so far written th and key 3 is pressed, based on the
probabilities for the English Language, the returned letter will
be e instead of d. If the returned letter is not the desired one
there is the need to type the special NEXT key so that the next
letter with the highest probability can be retrieved.

One problem with LetterWise is that as soon as the
probability matrix for the various prefixes is built from a
language corpus it becomes difficult to write non-words like
abbreviations or words not present in the initial corpus.
Another limitation, related with the first one is that
LetterWise does not have sophisticated learning capabilities.
If a user inserts non-words or words that are not covered by
the probability matrix the system does not change the
probability matrix in order to recognize these words. This
results into the burden of pressing the NEXT special key many
times.

The emergence of more powerful mobile terminals makes
possible to consider more elaborated disambiguation
techniques. In our approach we focus on the integration of a
learning mechanism in non dictionary based systems like
LetterWise. Additionally we assume that a user writes
different types of messages dependent of the interlocutor. We
call these types of messages by message styles. For instance it
is supposed that a kid communicating with other kids of the
same age uses a lot of abbreviations and slang but when
communicating, for instance, with an adult person tends to
use a quite different lexicon.

With this in mind we propose an approach for text input
disambiguation supported on a user model. The user model
comprises various profiles. Each profile has a representation
similar to the probability matrix used by LetterWise. One
main advantage of this approach is that the profiles are

learned dynamically along the composition of new messages.
Another is that the user model comprises various profiles
organized in a hierarchical structure. This makes possible to
have different disambiguation policies dependent on the type
of message that is being typed. Messages from a more general
style are disambiguated by the profile in root of the
hierarchical structure and messages written in more specific
styles are analyzed by the descendent profiles.

In section two we describe our approach. Section three
presents the results that were achieved with a corpus of
synthetic messages comprising two different styles of
messages. In the third section we discuss the results that were
obtained and outline future improvements. Section four
summarizes the main conclusions from this work.

2. Disambiguation suppor ted on a hierarchical
user model

As it was already pointed out common users compose various
types of messages going from well structured phrases,
respecting language rules, to messages full of jargon and
abbreviations. This makes appealing to support
disambiguation on a model of well formed phrases plus a user
model that represents the specific styles used by this person.

These requirements motivate us to consider a model
comprising various profiles structured in a hierarchical way
going from a general profile modelling a corpus of general
messages to more specific profiles associated to each type of
messages produced by a specific user.

2.1. User profiles

Within our approach a user profile corresponds to the
probability matrix used in LetterWise. In Fig. 4 we show the
messages that were in the origin of the profile represented in
Fig. 5.

cannot contact you call me back
in lesson call you back later

call me when you are free please
oh my god i hope this finishes soon

Figure 4: Four messages.

Each line in this matrix represents the number of
occurrences of the various letters of the alphabet conditioned
by a specific prefix. For instance the numbers 1, 1, and 1 in
the third row of Fig. 5 represent that within the corpus of
messages used to learn this profile the letters a, b, and c
occurred one time, after the occurrence of prefix u and of
pressing key #2.

For text disambiguation each time we have a prefix and
key pressed we follow the respective key column and prefix
row and return the triple or quadruple with the probabilities
for the letters associated to this key. The disambiguation
occurs by selecting the letter for his key with the highest
number of occurrences.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 5 5

Figure 5: A profile generated from four messages.

In the tests presented in this paper we consider profiles

produced considering prefixes of one and two letters length.

2.2. Profile hierarchy

Fig. 6 shows a user model comprising a set of profiles
organized in a hierarchical way.

Figure 6: A hierarchy of profiles.

At the beginning (before the user types any message) the

profile in the root of the hierarchy represents the occurrences
of letters after a prefix for all the messages in the training
corpus.

The specific profiles only deal with user messages. They
represent the occurrences for the groups of messages sharing
common characteristics but apart from each other – different
styles. In this way this hierarchy corresponds to a process of
hierarchical clustering. The criteria for clustering can assume
various forms. One could be to create two specific clusters for
messages with average word length bellow 3 letters and
another for messages with average word length equal or
greater to five1. In this case messages with an average length
between 3 and 5 would only be considered in the general
profile at the root of the hierarchy. The root profile is
influenced by the messages in the specific profiles plus the
messages that were not considered in these profiles.

1 We experimentally concluded that this is not a good criterion.

In the following subsection we describe how the global
and specific profiles are produced from a corpus of messages
and user messages.

2.3. Putting all together

In this subsection we start describing how a general profile is
created. Then we present how a new message updates profiles
and occasionally creates new specific profiles. We finish with
the description of the disambiguation of a message using the
profile hierarchy.

In our approach the first version of the general profile is
created from a corpus of messages that covers the kind of
SMSs produced by common users. Each message is scanned
for the number of occurrences of each letter after the prefixes
of length one and two that precede this letter in the message.
Anytime a prefix does not exist yet in the profile a new row is
created and the prefix is added to the profile.

 Only the general profile is present when the user starts
using the device. For the first n letters of the user message2
the general profile is used for disambiguation. This means
that after the second letter of the message the system looks for
a prefix of length two comprising the previous two letters
inserted in the message plus the key that is being pressed and
tries to disambiguate from the occurrences assigned for the
candidate letters (the letters associated to the pressed key).
This means that the letter associated to the pressed key that
has the highest number of occurrences in the general profile is
the one selected for disambiguation. If this guess is correct
than the number of occurrences associated to this letter in the
profile is increased by one. If this is not the correct letter then
the user has to tap again for retrieval of the next letter with
the highest number of occurrences in the profile till the
desired letter is retrieved.

After the insertion of the nth letter for the message the
system has to decide which profile will be used for
disambiguation of the coming key strokes. This decision is
based on the similarity of a profile created with the n letters
insert till the moment against the profiles in the profile
hierarchy.

The profile for the n letters of the message is created the
same way as the other profiles. This means that we scan the n
letters and count the occurrences of the letters conditioned by
their prefixes of length two and one. Fig. 7 shows the profile
for the first 15 letters of the first message in Fig. 4:

cannot contact you call me back

The similarity metric used for decision on which profile

will be used to disambiguate the letters after nth letter is based
on the average of ranking coefficient correlation for the
triplets or quadruplets addressed by the same prefix/key in the
message profile and each hierarchical profile.

2 Currently n is assigned to 15 letters.

… … ...

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 5 6

a b c d e f g h i j k l m n o p q r s t u v w x y z
c 1 1 1
a 1 1
ca 1
an 1
n 2 1 1
nn 1
no 1
o 1
t_ 1
_ 1
_c 1
co 1
on 1
nt 1
t 1
ta 1
ac 1

key #6 key #7 key #8 key #9key #2 key #3 key #4 key #5

Figure 7: Profile for the message “cannot contact …”.

Only triplets and quadruplets that have at least one

occurrence for one letter associated to the respective key in
the message profile and hierarchical profile contribute to the
average value.

For calculation of the ranking similarity we used the
Spearman’s Ranking Correlation Coefficient [13] which gives
values between 1 and -1:

Spearman Coef = (1)

where n is 3 and 4, respectively, for triplets and quadruplets,
and d is the distance in terms of ranking of a letter in the
triplets/quadruplets under evaluation. For instance, for the
triplets in the first row of Fig. 8 the distance for letter a is 2,
for letter b is 2 and for letter c is 1.

In Fig. 8 we represent two extreme values returned by the
Spearman’s Coefficient. In the first case we have two triplets
for key #2, respectively, in the message profile and in a
hierarchical profile. The ranking of the number of occurrences
for letters a, b, and c is opposite in the message and
hierarchical profiles so the ranking correlation coefficient is -
1.

The other situation in Fig. 8 represents a ranking of the
number of occurrences that is similar in both profiles so the
ranking correlation coefficient is 1.

Figure 8: Rank matching between corresponding triplets in

two profiles.

As pointed before, the similarity value between two

profiles is calculated by summing up the Sperman’s
Coefficient for the triplets or quadruplets with at least one

occurrence value different from zero in both profiles1, divided
by the number of triplets and quadruplets that are considered.

The hierarchical profile with the highest similarity against
the message profile is the one selected for disambiguation of
the remaining part of the message. An exceptional situation
occurs when the selected profile is a specific one and the
prefix under consideration is not present in this profile, but is
present in the global profile. In this case the global one is
used for disambiguation for this letter. The disambiguation
process returns to the use of the specific profile for the
following letters.

When the user finishes composing the message, the
message profile is updated with the part of the message after
the nth letter. The next step is the recalculation the similarity
between the message profile and all profiles in the hierarchy.
If none of the similarity values concerning all the existing
profiles is above a certain threshold this means this message
profile is quite different from all the profiles present in the
user model. This determines that the message profile is added
to the hierarchy of profiles.

3. Exper imental results

The main assumption for this approach is that users adopt
different styles for messages according to groups of
interlocutors. With this in mind we started by creating two
sets of synthetic messages. Bellow we present the synthetic
corpus of messages that we used and the results that were
obtained. In the following section we discuss these results and
on how we think they relate to real user’s messages.

In the following tests we were mainly interested in
understanding the kind of messages that benefit from using a
hierarchy of profiles vs. only a global profile.

Our main intuition is that the use of a single global profile
has as a consequence that letters that fewer times come after a
certain prefix will not be correctly disambiguated. If we have
specific profiles in addition to the global profile these
minority messages have the possibility to be correctly
disambiguated. The tests we performed till now corroborate
this assumption.

3.1. Corpus of synthetic SMSs

For this experiment we considered a corpus of synthetic
SMSs comprising two groups of messages with the following
structure:

GROUP #1:
<X1><X2>< L1><X1><X2>< L1>… <X1><X2>< L1>

GROUP #2:
<X1><X2>< L2><X1><X2>< L2>… <X1><X2>< L2>

With X1 and X2 letters from the alphabet and L1 L2

different letters but associated to the same key2.
We produced about two times the number of messages

from GROUP #1 than from GROUP #2 in order to create a
major group (GROUP #1) and a minority group (GROUP
#2).

1 This number different from zero can occur in different letters in the
two profiles.
2 This is the condition to produce an ambiguity.

a 3º a 1º

3º

2º

c

1º

2º

3º

12

90

50

b

c

1º

2º

50

9

23

b

c

12

90

50

a

b

3º

1º

2º

92

23

50

a

b

c

Spearman Rank Correlation value = -1

Spearman Rank Correlation value = 1

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 5 7

3.2. Results

We run the experiment on the synthetic corpus of messages
with three variants. First we only considered profiles with
prefixes of length one (we hidden the prefixes of length two).
The second test comprised only prefixes of length two. The
third test comprised both types of prefixes. For these tests we
measured the KSPC (Key Stokes Per Character) value, which
represents the average number of key strokes per message
character. The obtained results are described in Fig. 9.

Prefix Length:1 GLOB PROFILE / GLOB+SPEC PROFILES

 ABY 1.0000000 / 1.0000000
 ABX 1.3333334 / 1.1041666
 ABY + ABX (50%/50%) 1.1666666 / 1.0520834
 ABY + ABX (33%/77%) 1.2222222 / 1.0694444

Prefix Length:2 GLOB PROFILE / GLOB+SPEC PROFILES

 ABY 1.0208334 / 1.0208334
 ABX 1.3541666 / 1.1250000
 ABY + ABX (50%/50%) 1.1875000 / 1.0729167
 ABY + ABX (33%/77%) 1.2430555 / 1.0902770

Prefix Length:1+2 GLOB PROFILE / GLOB+SPEC PROFILES

 ABY 1.0000000 / 1.0000000
 ABX 1.3333334 / 1.1041666
 ABY + ABX (50%/50%) 1.1666666 / 1.0520834
 ABY + ABX (33%/77%) 1.2222222 / 1.0694444

Figure 9: Results.

In the following section we comment on the above results.

4. Discussion

We start analysing the results obtained considering only the
major group of messages (GROUP #1) for tests. This group
comprises messages with thirty letters comprising a sequence
of ABs followed by Y. These messages are correctly
disambiguated by the general profile as they are dominant. So
if we use profiles of length one they are always disambiguated
(KSPC = 1). When we use only prefixes of length two they
are not correctly disambiguated only for the first B in the
message and this is the reason why we do not have precisely 1
for result (KSPC = 1.02). When profiles of length one and
two are considered then we have the first situation (KSPC =
1).

Now let see what happens with the minority messages
alone. When using prefixes of length one, two, or both and
only the global profile is used the system completely fails
disambiguating the X letter (KSPC = 1.33). It means that A
and B are disambiguated but X is never correctly suggested
(this makes the increase of 1/3 = 0.33 in the KSPC value).
The value 1.35 for the KSPC when only prefixes of length
two are used is due to the first B in the message that is not
correctly disambiguated.

When we mix messages from both groups the results
obtained are between the extremes explained above. This is
what is expected. We have a degradation of the performance
when only the global profile is used and an increased number
of minority messages are typed.

These results make evident the need for specific profiles
for messages which pattern is minority against the patterns
represented in the general profile.

From these results we conclude that in situations in which
a major style of messages coexists with other styles that
comprise distinct patterns of letters we need to consider a
hierarchical system of profiles (probability matrixes) for the

disambiguation model in order to have the minority messages
correctly disambiguated.

At the current stage of this work we did not have yet the
opportunity to use real corpus of messages integrating
different styles. Although we think that starting by producing
corpus of synthetic messages is a good way to understand the
advantages and limitations of this approach.

Another aspect that needs further study concerns the
criterion for creation of new specific profiles during the
learning step. From the experiments we performed till now it
becomes evident that simply using as criteria a threshold for
the similarity value does not result into good specific profiles.
We think that the extensive work that has been performed in
the area of hierarchical clustering can be inspirational for the
improvement of this process.

5. Conclusions

Although various methods are currently used for text
disambiguation in 12 key phone keyboards and other
ubiquitous devices many of these techniques are dictionary-
based which result into poor performance when jargon or
abbreviations are extensively used in a message.

An approach that is not dictionary-based is LetterWise
[12]. It performs satisfactorily on balanced corpus of
messages. Notwithstanding when the probability matrix is
trained with a majority of messages in a certain style the
disambiguation completely fails for minority messages in a
different style. By a different style we mean one that for
various sequences of prefixes has a diverse disambiguation
letter from the ones in the other styles.

In this paper we propose a hierarchical profiling
(hierarchy of probability matrixes) for disambiguation used to
disambiguate messages written in minority styles.

We test this approach with a corpus of synthetic messages
comprising a major and a minority style. We show that single
profile approaches like LetterWise perform poorly on the
minority messages and that with an hierarchical structure of
profiles this problem can be overcame.

Our approach has two main strengths. One is that it
maintains a model of the various styles of messages composed
by the user and absent in the initial corpus of messages used
to initialise the system. This is of great relevance especially
when the user integrates a great amount of slang in the
messages which is a situation very common in SMS
communication. Another important aspect has to do with the
learning capabilities associated to this approach.

The system learns in two ways. It learns a new profile
when the message on its origin is quite different from the ones
represented by the profiles in memory. In another way the
system learns by updating the number of occurrence in the
existing profiles along the composition of messages by the
user. The possibility of creating new profiles has as a
consequence that minority styles are not override by major
styles. This effect is stressed in the experimental results
presented in this paper.

Although we used the Spearman Coefficient as being a
suitable approach for similarity ranking between two arrays of
letter occurrences, the work we are now developing shows
that this is a very computationally heavy approach in concern
of CPU usage. Being so, a new lighter approach is being
developed.

In the future we want to test this approach with real
messages with the characteristics described in this paper.
Another aspect that needs attention concerns to in which
circumstances we must create new specific profiles.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 5 8

Also we want to test the impact of having few specific
profiles versus increasing the number of profiles. Another
aspect concerns the length of the prefixes that integrate the
profiles. Our experience says that there is not a great
improvement when we go from a length limit of three to four,
with the handicap of a dramatic increase in memory
occupation.

Also it is important to understand if it is acceptable to
discard prefixes of length one which have low discriminatory
power and substantially increase the computational
complexity.

Another thing that couldn’t yet be done, but that has high
relevance, is the performance comparison with the existing
approaches.

References

[1] Poika Isokoski (2004). Manual Text Input: Experiments,
Models, and Systems. Academic Dissertation, Faculty of
Information Sciences of the University of Tampere, April
23rd, 2004. A-2004-3 Tampere. ISBN 951-44-5959-8.
[2] J. Cardinal and S. Langerman (2005). Designing small
keyboards is hard. Theoretical Computer Science, 332:405-
415.
[3] T9: Learn more. Tegic Communications, Inc, 30 April
2005 http://www.t9.com/learn.html.
[4] eZiText word prediction. Zi Corporation, 30 April 2005
http://www.zicorp.com/ezitext.htm.
[5] Whaley D. (2002). Better Ways of Typing Text Messages
on your Hand-held Device, in Business Briefing: Wireless
Technology 2003,p. 1-3
[6] MacKenzie, S., Kober, H., Smith, D., Jones, T.,
Skepner, E. (2001). LetterWise: prefix-based disambiguation
for mobile text input, in Proceedings of the 14th annual ACM
symposium on User interface software and technology,
Orlando, ACM, p. 111-120.
[7] Pavlovych, A., Stuerzlinger, W. (2003). Less-Tap: A fast
and easy-to-learn text input technique for phones, in
Proceedings of Graphics Interface, in GI 2003, Canadian
Information Processing Society, p. 97-104.
[8] Hasselgren, J., Montnemery, E., Nugues, P., Svensson,
M. (2003). HMS: A Predictive Text Entry Method Using
Bigrams , in Proceedings of the Workshop on Language
Modeling for Text Entry Methods, 10th Conference of the
European Chapter of the Association of Computational
Linguistics, Budapest, p. 43-49.
[9] Wigdor, D., Balakrishnan, R. (2004). A Comparison of
Consecutive and Concurrent Input Text Entry Techniques for
Mobile Phones, in Proceedings of CHI 2004, Volume 6,
Number 1, Vienna, ACM, p. 81-88.
[10] Wigdor, D., Balakrishnan, R. (2003). TiltText: using tilt
for text input to mobile phones, in Proceedings of the 16th
annual ACM symposium on User interface software and
technology, Vancouver, ACM, p. 81-90.
[11] Gutowitz, H. (2003). Barriers to Adoption of
Dictionary- Based Text-Entry Methods: A Field Study, in 10th
Conference of the European Chapter of the Association for
Computational Linguistics, Budapest.
[12] MacKenzie, S. (2002). KSPC (Keystrokes per
Character) as a Characteristic of Text Entry Techniques, in
Proceedings of the 4th International Symposium on Mobile
Human-Computer Interaction, Springer-Verlag, p. 195 – 210.
[13] On-line statistics, University of Leicester. 30 April 2005
http://www.le.ac.uk/biology/gat/virtualfc/Stats/spear.htm

