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Abstract 

Mobile phones are used for various tasks that go far from 
voice communication. A popular use is for composition of 
short messages (SMSs), but other applications are also 
available like email, agenda, contact, and note management. 
All these uses have in common the need for text input on a 
small keyboard with ambiguity problems. 

Various techniques are currently used for input 
disambiguation, with variable results in terms of usability and 
efficiency. Some techniques achieve good performance with 
messages composed by words from a dictionary but poorly 
when a significant number of words are not in memory.  

In this paper we present a solution for text disambiguation 
supported on a general model for disambiguation plus a user 
model generated from previous messages sent by the user. We 
present results obtained with this approach and discuss future 
improvements. 

1. Introduction 

The use of Short Message Services (SMS) is an important 
source of revenue for the mobile communication industry.   

With the growth in the processing capacity of mobile 
terminals, several new applications have emerged. For many 
of these applications the success depends on the availability 
of efficient ways for text input in 12-key phone keyboards. 
This is especially true for applications that involve 
composition of long sequences of text like when preparing 
emails or writing notes.  

In general, current devices incorporate one or both of two 
groups of text input techniques [1]: pen-based and key-based. 
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Figure 1:  Twelve keys ambiguous keyboard. 

 
The first one, more common in Personal Data Assistants 

(PDAs), makes use of one “pen” and a sensitive screen 
allowing inputting text in two different ways: on a virtual 
keyboard that shows up on the terminal screen or drawing the 
symbol that must be recognized as the letter we want to write.   

The key-based approach, more common in mobile 
phones, can be implemented on complete keyboards, i.e. 
keyboards with one key for each letter (e.g. Nokia 9110 
Communicator) and ambiguous keyboards, namely 12-key 
phone keyboards, in which each key is assigned to three or 
four different letters (e.g. Nokia 7110). 

The focus of our research is on the second group of input 
systems: ambiguous keyboards. Fig. 1 shows the usual aspect 
for these keyboards. 

The way letters are disposed is defined by international 
standards1, so independently of the language of use all users 
have the same ambiguities on their keyboards. 

The typing process in such devices involves pressing each 
key one or more times until the desired letter is retrieved. The 
number of times one key has to be pressed depends on the 
sequence of letters predefined for this key. For instance, to 
write the letter y  the 9 key has to be pressed three times. This 
simplified way of entering text is called multi-tap [2], since we 
need to tap several times each key to obtain the desired letter. 

Fig. 2 represents the sequence of keys that need to be 
pressed to write the word “terminal” using the multi-tap 
technique. 

 
  

8 33 777 6 444 66   2 555 
t e r m i     n a l 

 
                     

Figure 2: Sequence of pressed keys to write terminal with 
multi-tap. 

 
Using the multi-tap technique we would need to press the 

keys 16 times to write this 8 letters word. Luckily, there are 
several intelligent techniques that allow writing text with a 
much smaller number of key strokes. 

The most known technique is T92 [3]. This technique is 
based on a dictionary. Working with T9 is quite simple, 
although some training is necessary. The user just needs to 
press one time each key associated to the letter that s/he wants 
to write. The system progressively tries to find the words (or 
part of the words) in the dictionary that include letters 
associated to the keys that were pressed so far. 

If all the keys were pressed and the word retrieved from 
the dictionary is not the one that we want, a special key must 
be pressed to retrieve the other possible words, and hopefully, 
the desired word will be presented.  

To write words that are not in the dictionary, it is 
necessary to turn off the intelligent writing and write as 
described for the multi-tap technique. In recent 
implementations of T9, the system integrates the new words 
in the dictionary.  

In Fig. 3 we represent the writing sequence of the word 
“terminal” using T9 with an English Language dictionary. 

                                                           
1 ITU E.161 ou ANSI T1.703-1995/1999 ou ISO/IEC 9995-8:1994. 
2 Acronym for text on nine keys. 
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 key        result  

8            t 
3            ve 
7            ter 
6            term 
7            termi 
6            vermin 
2            termina 
5            terminal 

 
Figure 3: Sequence of pressed keys to write terminal with T9. 

 
In this picture it is patent that only 8 key-presses were 

necessary to write this 8 letter word. 
Being T9, the technique with the strongest market share, 

there are other techniques competing with it namely eZiText 
[4], iTap [5] and  LetterWise [6]. 

There are also other approaches that are not so well 
known. Some of them are based on software key 
disambiguation like Less-Tap [7] and HMS [8], and 
techniques in which the disambiguation is performed by the 
use of extra keys like chording keyboards [9], or by the use of 
inertial sensors like TiltText  [10].  

Systems based on a dictionary such as T9 have important 
limitations [11] like the lack of several common words in the 
dictionary; no slang words in the dictionary; the need to 
visually follow writing, the need to switch between language 
databases, and the need for teaching new words manually. 

A well known disambiguation technique that is not based 
on a dictionary is LetterWise [12]. Instead of a dictionary it 
calculates probabilities that are used to guess the next letter to 
be written having in consideration what was written so far 
(the prefix).  

For instance, if we want to write the word the and we 
have so far written th and key 3 is pressed, based on the 
probabilities for the English Language, the returned letter will 
be e instead of d. If the returned letter is not the desired one 
there is the need to type the special NEXT key so that the next 
letter with the highest probability can be retrieved.  

One problem with LetterWise is that as soon as the 
probability matrix for the various prefixes is built from a 
language corpus it becomes difficult to write non-words like 
abbreviations or words not present in the initial corpus. 
Another limitation, related with the first one is that 
LetterWise does not have sophisticated learning capabilities. 
If a user inserts non-words or words that are not covered by 
the probability matrix the system does not change the 
probability matrix in order to recognize these words. This 
results into the burden of pressing the NEXT special key many 
times.  

The emergence of more powerful mobile terminals makes 
possible to consider more elaborated disambiguation 
techniques. In our approach we focus on the integration of a 
learning mechanism in non dictionary based systems like 
LetterWise. Additionally we assume that a user writes 
different types of messages dependent of the interlocutor. We 
call these types of messages by message styles. For instance it 
is supposed that a kid communicating with other kids of the 
same age uses a lot of abbreviations and slang but when 
communicating, for instance, with an adult person tends to 
use a quite different lexicon. 

With this in mind we propose an approach for text input 
disambiguation supported on a user model. The user model 
comprises various profiles. Each profile has a representation 
similar to the probability matrix used by LetterWise. One 
main advantage of this approach is that the profiles are 

learned dynamically along the composition of new messages. 
Another is that the user model comprises various profiles 
organized in a hierarchical structure. This makes possible to 
have different disambiguation policies dependent on the type 
of message that is being typed. Messages from a more general 
style are disambiguated by the profile in root of the 
hierarchical structure and messages written in more specific 
styles are analyzed by the descendent profiles. 

In section two we describe our approach. Section three 
presents the results that were achieved with a corpus of 
synthetic messages comprising two different styles of 
messages. In the third section we discuss the results that were 
obtained and outline future improvements. Section four 
summarizes the main conclusions from this work. 

2. Disambiguation suppor ted on a hierarchical 
user  model  

As it was already pointed out common users compose various 
types of messages going from well structured phrases, 
respecting language rules, to messages full of jargon and 
abbreviations. This makes appealing to support 
disambiguation on a model of well formed phrases plus a user 
model that represents the specific styles used by this person.  

These requirements motivate us to consider a model 
comprising various profiles structured in a hierarchical way 
going from a general profile modelling a corpus of general 
messages to more specific profiles associated to each type of 
messages produced by a specific user. 

2.1. User  profiles  

Within our approach a user profile corresponds to the 
probability matrix used in LetterWise. In Fig. 4 we show the 
messages that were in the origin of the profile represented in 
Fig. 5.  
 

cannot contact you call me back 
in lesson call you back later 

call me when you are free please 
oh my god i hope this finishes soon  

Figure 4: Four messages. 
 

Each line in this matrix represents the number of 
occurrences of the various letters of the alphabet conditioned 
by a specific prefix. For instance the numbers 1, 1, and 1 in 
the third row of Fig. 5 represent that within the corpus of 
messages used to learn this profile the letters a, b, and c 
occurred one time, after the occurrence of prefix u and of 
pressing key #2. 

For text disambiguation each time we have a prefix and 
key pressed we follow the respective key column and prefix 
row and return the triple or quadruple with the probabilities 
for the letters associated to this key. The disambiguation 
occurs by selecting the letter for his key with the highest 
number of occurrences. 
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Figure 5: A profile generated from four messages. 

 
In the tests presented in this paper we consider profiles 

produced considering prefixes of one and two letters length. 

2.2. Profile hierarchy  

Fig. 6 shows a user model comprising a set of profiles 
organized in a hierarchical way.  

 

 
Figure 6: A hierarchy of profiles. 

 
At the beginning (before the user types any message) the 

profile in the root of the hierarchy represents the occurrences 
of letters after a prefix for all the messages in the training 
corpus.  

The specific profiles only deal with user messages. They 
represent the occurrences for the groups of messages sharing 
common characteristics but apart from each other – different 
styles. In this way this hierarchy corresponds to a process of 
hierarchical clustering. The criteria for clustering can assume 
various forms. One could be to create two specific clusters for 
messages with average word length bellow 3 letters and 
another for messages with average word length equal or 
greater to five1. In this case messages with an average length 
between 3 and 5 would only be considered in the general 
profile at the root of the hierarchy. The root profile is 
influenced by the messages in the specific profiles plus the 
messages that were not considered in these profiles.   

                                                           
1 We experimentally concluded that this is not a good criterion. 

In the following subsection we describe how the global 
and specific profiles are produced from a corpus of messages 
and user messages. 

2.3. Putting all together   

In this subsection we start describing how a general profile is 
created. Then we present how a new message updates profiles 
and occasionally creates new specific profiles. We finish with 
the description of the disambiguation of a message using the 
profile hierarchy. 

In our approach the first version of the general profile is 
created from a corpus of messages that covers the kind of 
SMSs produced by common users. Each message is scanned 
for the number of occurrences of each letter after the prefixes 
of length one and two that precede this letter in the message. 
Anytime a prefix does not exist yet in the profile a new row is 
created and the prefix is added to the profile. 

 Only the general profile is present when the user starts 
using the device. For the first n letters of the user message2 
the general profile is used for disambiguation. This means 
that after the second letter of the message the system looks for 
a prefix of length two comprising the previous two letters 
inserted in the message plus the key that is being pressed and 
tries to disambiguate from the occurrences assigned for the 
candidate letters (the letters associated to the pressed key). 
This means that the letter associated to the pressed key that 
has the highest number of occurrences in the general profile is 
the one selected for disambiguation. If this guess is correct 
than the number of occurrences associated to this letter in the 
profile is increased by one. If this is not the correct letter then 
the user has to tap again for retrieval of the next letter with 
the highest number of occurrences in the profile till the 
desired letter is retrieved. 

After the insertion of the nth letter for the message the 
system has to decide which profile will be used for 
disambiguation of the coming key strokes.  This decision is 
based on the similarity of a profile created with the n letters 
insert till the moment against the profiles in the profile 
hierarchy. 

The profile for the n letters of the message is created the 
same way as the other profiles. This means that we scan the n 
letters and count the occurrences of the letters conditioned by 
their prefixes of length two and one. Fig. 7 shows the profile 
for the first 15 letters of the first message in Fig. 4:   

 
cannot  contact you call me back 

 
The similarity metric used for decision on which profile 

will be used to disambiguate the letters after nth letter is based 
on the average of ranking coefficient correlation for the 
triplets or quadruplets addressed by the same prefix/key in the 
message profile and each hierarchical profile. 

                                                           
2 Currently n is assigned to 15 letters. 

… … ...
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a b c d e f g h i j k l m n o p q r s t u v w x y z
c 1 1 1
a 1 1
ca 1
an 1
n 2 1 1
nn 1
no 1
o 1
t_ 1
_ 1
_c 1
co 1
on 1
nt 1
t 1
ta 1
ac 1

key #6 key #7 key #8 key #9key #2 key #3 key #4 key #5

 
Figure 7: Profile for the message “cannot contact …”.  

 
Only triplets and quadruplets that have at least one 

occurrence for one letter associated to the respective key in 
the message profile and hierarchical profile contribute to the 
average value.  

For calculation of the ranking similarity we used the 
Spearman’s Ranking Correlation Coefficient [13] which gives 
values between 1 and -1: 

 
Spearman Coef =                                 (1) 
 

where n is 3 and 4, respectively, for triplets and quadruplets, 
and d is the distance in terms of ranking of a letter in the 
triplets/quadruplets under evaluation. For instance, for the 
triplets in the first row of Fig. 8 the distance for letter a is 2, 
for letter b is 2 and for letter c is 1. 

In Fig. 8 we represent two extreme values returned by the 
Spearman’s Coefficient. In the first case we have two triplets 
for key #2, respectively, in the message profile and in a 
hierarchical profile. The ranking of the number of occurrences 
for letters a, b, and c is opposite in the message and 
hierarchical profiles so the ranking correlation coefficient is -
1.  

The other situation in Fig. 8 represents a ranking of the 
number of occurrences that is similar in both profiles so the 
ranking correlation coefficient  is 1. 

 

 
Figure 8: Rank matching between corresponding triplets in 

two profiles.  
 
As pointed before, the similarity value between two 

profiles is calculated by summing up the Sperman’s 
Coefficient for the triplets or quadruplets with at least one 

occurrence value different from zero in both profiles1, divided 
by the number of triplets and quadruplets that are considered. 

The hierarchical profile with the highest similarity against 
the message profile is the one selected for disambiguation of 
the remaining part of the message. An exceptional situation 
occurs when the selected profile is a specific one and the 
prefix under consideration is not present in this profile, but is 
present in the global profile. In this case the global one is 
used for disambiguation for this letter. The disambiguation 
process returns to the use of the specific profile for the 
following letters.  

When the user finishes composing the message, the 
message profile is updated with the part of the message after 
the nth letter. The next step is the recalculation the similarity 
between the message profile and all profiles in the hierarchy. 
If none of the similarity values concerning all the existing 
profiles is above a certain threshold this means this message 
profile is quite different from all the profiles present in the 
user model. This determines that the message profile is added 
to the hierarchy of profiles. 

3. Exper imental results 

The main assumption for this approach is that users  adopt 
different styles for messages according to groups of 
interlocutors. With this in mind we started by creating two 
sets of synthetic messages. Bellow we present the synthetic 
corpus of messages that we used and the results that were 
obtained. In the following section we discuss these results and 
on how we think they relate to real user’s messages.   

In the following tests we were mainly interested in 
understanding the kind of messages that benefit from using a 
hierarchy of profiles vs. only a global profile.  

Our main intuition is that the use of a single global profile 
has as a consequence that letters that fewer times come after a 
certain prefix will not be correctly disambiguated. If we have 
specific profiles in addition to the global profile these 
minority messages have the possibility to be correctly 
disambiguated. The tests we performed till now corroborate 
this assumption. 

3.1. Corpus of synthetic SMSs  

For this experiment we considered a corpus of synthetic 
SMSs comprising two groups of messages with the following 
structure: 

 
GROUP #1: 
<X1><X2>< L1><X1><X2>< L1>… <X1><X2>< L1> 
 
GROUP #2: 
<X1><X2>< L2><X1><X2>< L2>… <X1><X2>< L2> 
 
With X1 and X2 letters from the alphabet and L1 L2 

different letters but associated to the same key2. 
We produced about two times the number of messages 

from GROUP #1 than from  GROUP #2 in order to create a 
major group (GROUP #1) and a minority group (GROUP 
#2). 

                                                           
1 This number different from zero can occur in different letters in the 
two profiles. 
2 This is the condition to produce an ambiguity.  

a 3º a 1º 

3º 

2º 

c 

1º 

2º 

3º 

12

90 

50 

b 

c 

1º 

2º 

50

9 

23 

b 

c 

12

90 

50 

a 

b 

3º 

1º 

2º 

92 

23 

50 

a 

b 

c 

Spearman Rank Correlation value = -1 
 

Spearman Rank Correlation value = 1 
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3.2. Results  

We run the experiment on the synthetic corpus of messages 
with three variants. First we only considered profiles with 
prefixes of length one (we hidden the prefixes of length two). 
The second test comprised only prefixes of length two. The 
third test comprised both types of prefixes. For these tests we 
measured the KSPC (Key Stokes Per Character) value, which 
represents the average number of key strokes per message 
character. The obtained results are described in Fig. 9. 
 
 
Prefix Length:1     GLOB PROFILE / GLOB+SPEC PROFILES 
 
  ABY        1.0000000 / 1.0000000 
  ABX       1.3333334 / 1.1041666 
  ABY + ABX (50%/50%)  1.1666666 / 1.0520834 
  ABY + ABX (33%/77%)  1.2222222 / 1.0694444 
 
Prefix Length:2     GLOB PROFILE / GLOB+SPEC PROFILES 
 
  ABY       1.0208334 / 1.0208334 
  ABX       1.3541666 / 1.1250000 
  ABY + ABX (50%/50%)  1.1875000 / 1.0729167 
  ABY + ABX (33%/77%)  1.2430555 / 1.0902770 
 
Prefix Length:1+2   GLOB PROFILE / GLOB+SPEC PROFILES 
 
  ABY       1.0000000 / 1.0000000 
  ABX       1.3333334 / 1.1041666 
  ABY + ABX (50%/50%)  1.1666666 / 1.0520834 
  ABY + ABX (33%/77%)  1.2222222 / 1.0694444 
  

Figure 9: Results. 
 
In the following section we comment on the above results. 

4. Discussion 

We start analysing the results obtained considering only the 
major group of messages (GROUP #1) for tests. This group 
comprises messages with thirty letters comprising a sequence 
of ABs followed by Y.  These messages are correctly 
disambiguated by the general profile as they are dominant. So 
if we use profiles of length one they are always disambiguated 
(KSPC = 1). When we use only prefixes of length two they 
are not correctly disambiguated only for the first B in the 
message and this is the reason why we do not have precisely 1 
for result (KSPC = 1.02). When profiles of length one and 
two are considered then we have the first situation (KSPC = 
1). 

Now let see what happens with the minority messages 
alone. When using prefixes of length one, two, or both and 
only the global profile is used the system completely fails 
disambiguating the X letter (KSPC = 1.33). It means that A 
and B are disambiguated but X is never correctly suggested 
(this makes the increase of 1/3 = 0.33 in the KSPC value). 
The value 1.35 for the KSPC when only prefixes of length 
two are used is due to the first B in the message that is not 
correctly disambiguated.  

When we mix messages from both groups the results 
obtained are between the extremes explained above. This is 
what is expected. We have a degradation of the performance 
when only the global profile is used and an increased number 
of minority messages are typed. 

These results make evident the need for specific profiles 
for messages which pattern is minority against the patterns 
represented in the general profile. 

From these results we conclude that in situations in which 
a major style of messages coexists with other styles that 
comprise distinct patterns of letters we need to consider a 
hierarchical system of profiles (probability matrixes) for the 

disambiguation model in order to have the minority messages 
correctly disambiguated. 

At the current stage of this work we did not have yet the 
opportunity to use real corpus of messages integrating 
different styles. Although we think that starting by producing 
corpus of synthetic messages is a good way to understand the 
advantages and limitations of this approach.  

Another aspect that needs further study concerns the 
criterion for creation of new specific profiles during the 
learning step. From the experiments we performed till now it 
becomes evident that simply using as criteria a threshold for 
the similarity value does not result into good specific profiles. 
We think that the extensive work that has been performed in 
the area of hierarchical clustering can be inspirational for the 
improvement of this process.  

5. Conclusions 

Although various methods are currently used for text 
disambiguation in 12 key phone keyboards and other 
ubiquitous devices many of these techniques are dictionary-
based which result into poor performance when jargon or 
abbreviations are extensively used in a message. 

An approach that is not dictionary-based is LetterWise 
[12]. It performs satisfactorily on balanced corpus of 
messages. Notwithstanding when the probability matrix is 
trained with a majority of messages in a certain style the 
disambiguation completely fails for minority messages in a 
different style. By a different style we mean one that for 
various sequences of prefixes has a diverse disambiguation 
letter from the ones in the other styles. 

In this paper we propose a hierarchical profiling 
(hierarchy of probability matrixes) for disambiguation used to 
disambiguate messages written in minority styles. 

We test this approach with a corpus of synthetic messages 
comprising a major and a minority style. We show that single 
profile approaches like LetterWise perform poorly on the 
minority messages and that with an hierarchical structure of 
profiles this problem can be overcame. 

Our approach has two main strengths. One is that it 
maintains a model of the various styles of messages composed 
by the user and absent in the initial corpus of messages used 
to initialise the system. This is of great relevance especially 
when the user integrates a great amount of slang in the 
messages which is a situation very common in SMS 
communication. Another important aspect has to do with the 
learning capabilities associated to this approach.   

The system learns in two ways. It learns a new profile 
when the message on its origin is quite different from the ones 
represented by the profiles in memory. In another way the 
system learns by updating the number of occurrence in the 
existing profiles along the composition of messages by the 
user. The possibility of creating new profiles has as a 
consequence that minority styles are not override by major 
styles. This effect is stressed in the experimental results 
presented in this paper. 

Although we used the Spearman Coefficient as being a 
suitable approach for similarity ranking between two arrays of 
letter occurrences, the work we are now developing shows 
that this is a very computationally heavy approach in concern 
of CPU usage. Being so, a new lighter approach is being 
developed.  

In the future we want to test this approach with real 
messages with the characteristics described in this paper. 
Another aspect that needs attention concerns to in which 
circumstances we must create new specific profiles.  
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Also we want to test the impact of having few specific 
profiles versus increasing the number of profiles. Another 
aspect concerns the length of the prefixes that integrate the 
profiles. Our experience says that there is not a great 
improvement when we go from a length limit of three to four, 
with the handicap of a dramatic increase in memory 
occupation.  

Also it is important to understand if it is acceptable to 
discard prefixes of length one which have low discriminatory 
power and substantially increase the computational 
complexity. 

Another thing that couldn’t yet be done, but that has high 
relevance, is the performance comparison with the existing 
approaches. 
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