
Joint sOc-EUSAI conference Grenoble, october 2005

p. 1 7 7

Automatic Semantic Platform-dependent Redesign

Giulio Mori & Fabio Paternò

ISTI – C.N.R.
Via Moruzzi, 1 - 56124 Pisa, Italia

{giulio.mori, fabio.paterno}@isti.cnr.it

Abstract

Nowadays, many devices provide access to Web pages:
desktops, mobile phones, PDAs, etc.. Often desktop user
interfaces need to be redesigned for mobile devices in order to
support nomadic access. The problem of adapting the interface
to different platforms can be addressed in many ways. Low-
level syntactical transcoding or just resizing elements do not
seem able to provide general solutions: they often generate
poor results in terms of usability because they follow rigid
rules and mainly try to fit the same design into different
devices. This paper presents our solution, which is based on
platform-dependent semantic redesign. Semantic redesign
means that transformation from one platform to another is
based on the use of semantic information and not only on the
analysis of the low-level implementation. In our case, such
semantic information is contained in logical descriptions of the
user interfaces that also capture the possible tasks users intend
to accomplish.

1. Introduction

In recent years there has been an increasing availability in the
mass market of various types of interactive devices, in
particular mobile devices (UMTS phones, tablet PCs,
intelligent watches, just to mention a few). Thus, in order to
improve user experience, it is important that many applications
be accessible through such a variety of devices. This means
that the interface must be able to adapt to the interaction
resources actually supported by each device. However,
separate development of the user interface software for each
potential support is quite expensive. The problem of adapting
the interface to different platforms can be addressed in many
ways. There are automatic tools that mainly translate from one
implementation language to another. This type of low-level
syntactical transcoding often provides poor results in terms of
usability because it follows rigid rules and mainly tries to fit
the same design into different devices. We do not believe that
just resizing elements is sufficient for obtaining general
solutions. The more the environment is able to ascend
hierarchy of interface abstraction levels, the more substantial
will be the possible modification that can be performed taking
into account the characteristics of the other target devices. If
the environment is able to identify the concrete object
associated with the current user interface element, then it is
possible to represent that specific object in a way tailored to
the new device, whereas if it is able to identify the
corresponding abstract object (a modality-independent
description), then the environment can change the choice of
the interaction technique implementation depending on the
characteristics of the new device. However, if the environment
is also able to understand the corresponding task then it can
reason at this level as well and make a wider set of decisions:
the task at hand can still be performed, but with different
modalities (different user interface elements or domain

elements or even a different task structure with different
subtasks associated with the same main task) or it can decide
that in the new context of use the original task no longer has
importance. It is difficult to perform this level of reasoning
completely automatically. This has raised interest in research
results in model-based approaches for interactive applications
[2], [5], [6], [10], which provide declarative descriptions of
the user interface and tool support to generate the
corresponding implementation taking into account the features
of the target devices. This approach has also been adopted in
new W3C standards (such as XForms where the same logical
interaction can be rendered differently according to the
platform). Thus, providing pervasive usable services calls for
tools able to exploit such possibilities. One example is
TERESA [8], which is an authoring tool that provides support
for various model-based methods following a top-down
approach. In this framework, herein we present a new solution
in order to support automatic semantic platform-dependent
redesign. This is useful, for example, when a desktop version
exists or is the first to be implemented and then designers
would like to obtain a version for mobile devices, which is
able to adapt to their features while reusing elements already
generated for the desktop version. By platform-dependent
redesign we mean the possibility of changing the design for an
interactive platform in order to adapt to a new one. A platform
is a set of devices that have similar interaction resources (for
example, the desktop, the PDA, the vocal device). Semantic
redesign means that this transformation is based on the use of
semantic information and not only on the analysis of the low-
level implementation. In our case, the semantic information is
in the logical descriptions of the user interface at various
abstraction levels. Different approaches to transcoding are
possible [7]. Some work aiming at supporting redesign of
desktop user interfaces has started to appear, such as Vaquita
[4] and its evolutions, but we aim to provide a more general
solution able to consider a wider set of semantic information,
including user tasks. To this end we have developed a solution
that is able to support all such possible abstraction levels
differently from other approaches, such as UIML [1], which
are mainly limited to the concrete level.
In the paper we first introduce the type of logical user interface
descriptions we use to analyse user interfaces and their
potential redesign, without having to manage many low-level
implementation details. Then, we introduce semantic redesign
and show how it can be used in various design processes.
These elements are exploited in our transformation, whose
main rules are first introduced in general terms and then
discussed through a specific example and a further case study.
Lastly, we draw some conclusions and provide indications for
future work.

2. Logical description of the user interface

The environment that we propose is able to support two
device-independent languages: one (ConcurTaskTrees [9]) is

Joint sOc-EUSAI conference Grenoble, october 2005

p. 1 7 8

used to describe the tasks that users intend to accomplish and
the objects manipulated for this purpose, the other one shifts
the focus to the user interface, but still in an abstract,
modality-independent manner. Then, for each platform there is
a concrete language. The concrete description is mainly a
platform-dependent refinement of the abstract interface. Its
purpose is to create a link between the abstract description and
the implementation languages for a given platform. We can
generate such logical descriptions and manipulate them with
the support of semantic information in order to obtain the
versions for mobile devices in two manners:

• through a reverse engineering transformation of
desktop Web pages, which can be performed by a
reverse/redesign proxy server [3]; the created logical
descriptions can be transformed in order to obtain
the logical descriptions first and then the
implementation for mobile devices.

• through the TERESA tool; starting with a task
model for a desktop platform, the tool supports the
transformation for redesigning desktop logical
descriptions for mobile devices. This feature is
useful for developers who want to quickly generate a
mobile interface version.

An abstract user interface is structured into presentations and
connections indicating how it is possible to move from one
presentation to another. Each presentation is structured into
interactors (logical interaction objects) and composition
operators. We have defined a number of composition
operators, which aim to capture communication effects that
often designers want to achieve when they structure their user
interfaces. The purpose of the composition operators is to
indicate how to put together interactors. Each composition
operator is associated with a communication goal. Depending
on such goals, different implementation techniques will be
used to support the composition operator. Figure 1 shows an
example of a Web page taken from a frequently accessed Web
site. We can note how the designer used various techniques to
highlight groups of related interface elements. On the top there
are elements that are ordered according to the potential user
interest. Some elements are grouped using implementation
techniques such as same background, same structure, bullets
and so on. There are elements that are related to the rest of the
Web site, such as the search element. Other elements are
highlighted using large image and fonts because they are
considered important.
In general, the composition operators can involve one or two
expressions, each of which can be composed of one or several
interactors or even compositions of interactors. In addition,
their definition is modality-independent. They are:

• Grouping (G): indicates a set of interface elements
logically connected to each other;

• Relation (R): highlights a relation (usually one-to-
many) among some elements; one element has some
effects on a set of elements;

• Ordering (O): some kind of ordering among a set of
elements can be highlighted;

• Hierarchy (H): different levels of importance can be
defined among a set of elements.

Figure 1: Web page with indication of some associated
communication goals.

3. Semantic redesign

In our environment semantic redesign can be applied in three
design processes. In one case the designer uses our
environment to create the abstract user interfaces first (8 of
Figure 2), then the corresponding concrete one and lastly the
final interface for the desktop system (step 2 and 1). Then, the
abstract and concrete descriptions are again considered as
input for the redesign module, which can produce the new
interface and corresponding logical descriptions.

Figure 2: Semantic redesign with forward and reverse

engineering.

This can also be obtained through a process whereby there is
an existing desktop version and a reverse engineering
transformation is applied (step 6 and 7) to derive the
corresponding concrete and abstract user interfaces.
Subsequently, these are input (step 3) to the redesign module,
which generates (step 4) the abstract and concrete descriptions
(and their mappings) for the mobile interface. These are then
used for generating the final corresponding user interface.

A variant of this solution is represented in Figure 3. The
difference in this case is that the redesign module also receives
information from the nomadic task model as input. A nomadic
task model is a model that indicates the platforms suitable for
supporting each task. Thus, filtering only those tasks suitable
for a given platform on a nomadic task model generates the
task model for that specific platform. This means that this
variant of the redesign module also receives information
regarding which platforms are suitable to support a given task.
Thus, if a task is considered appropriate for a desktop system
but not for a mobile device, because of its more limited
interaction resources, then the interactors corresponding to
such task will not be created in the logical description of the

Joint sOc-EUSAI conference Grenoble, october 2005

p. 1 7 9

mobile interface and, consequently, will be lacking in its
implementation.

Figure 3: Semantic redesign with nomadic task model

support.

4. The transformation supporting semantic
platform redesign

In this section we discuss how our platform-dependent
redesign transformation works considering the concrete
/abstract description of the user interface. Given the limited
resources in screen size of mobile devices, desktop
presentations generally must be split into a number of different
presentations for the mobile devices. The logical levels
provide us with some semantic information that can be useful
for identifying meaningful ways to split the desktop
presentations along with the user interface state information
(the actual implemented elements, such as labels, images, …).
The redesign module analyses the input from the logical
descriptions and generates an abstract and concrete description
for the mobile device from which it is possible to
automatically obtain the corresponding user interfaces. The
redesign module also decides how abstract interactors and
composition operators should be implemented in the target
mobile platform.
In order to automatically redesign a desktop presentation for a
mobile presentation, we need to consider semantic information
and the limits of the available resources. If we only consider
the physical limitations we may end up dividing large pages
into small pages that are not meaningful. To avoid this, we
also consider the composition operators indicated in the
logical descriptions. To this end, our algorithm tries to
maintain interactors that are composed through some operator
at the conceptual level in the same page, thus preserving the
designer’s communication goals. However, this is not always
possible because of the limitations of the target platform. In
this case, the algorithm aims (when possible) to equally
distribute the interactors into mobile device presentations. In
addition, splitting the pages requires a change in the
navigation structure with the need for additional navigator
interactors that allow access to the newly created pages. More
specifically, the transformation follows these main criteria:

• The presentation split from desktop to mobile takes
into account the composition operators because they
indicate semantic relations among the elements that

should be preserved in the resulting mobile
interface. Another aspect considered is the number
and cost of interactors. The cost is related to the
interaction resources consumed, so it depends on
pixels required, size of the fonts and similar aspects.

• The implementation of the logical interactor may
change according to the interaction resources
available in the target platform.

• The connections of the resulting interface should
include the original ones and add those derived from
the presentation split.

• The images should be resized according to the
screen size of the target devices keeping the same
aspect ratio. In some cases they may not be rendered
at all because the result is too small or the mobile
device does not support them.

• Text and labels can be transformed as well, because
they may be too long for the mobile devices. In
converting labels we use tables able to identify
shorter synonyms.

In particular, regarding the creation of new connections the
following rules are applied:

• original connections of desktop presentations are
associated to the mobile presentations that contain
the interactor triggering the transition. The
destination for each of these connections is the first
mobile presentation obtained by splitting the
original desktop destination presentation;

• composition operators that are allocated to a new
mobile presentation are substituted in the original
presentation by a link to the new presentation
containing the first interactor associated with the
composition operators.

• when a set of interactors composed through a
specific operator has been split into multiple
presentations because they do not fit into a single
mobile presentation, then we need to introduce new
connections to navigate through the new series of
mobile presentations.

In the transformation process we take into account semantic
aspects and the cost in terms of interaction resources of the
elements considered. In an early version we attempted to
define the maximum number of interactors that can be used in
a mobile presentation. However, this proved to be too rigid as
different interactors have varying screen space and interaction
resource requirements. So, we decided to define for each
mobile device class identified (large, medium or small) a
maximum acceptable overall cost in terms of the interaction
resources utilizable in a single presentation. So in this
approach, each interactor and (even each composition
operator) has a different cost in terms of interaction resources.
The algorithm inserts interactors into a mobile presentation
until the sum of individual interactor and composition operator
costs reaches the maximum global cost supported. Examples
of elements that determine the cost of interactors are the font
size (in pixels) and number of characters in a text, image size
(in pixels), if present. One example of the costs associated
with composition operators is the minimum additional space
(in pixels) needed to contain all its interactors in a readable
layout. This additional value depends on the way the
composition operator is implemented (for example, if a
grouping is implemented with a fieldset or with bullets).

Joint sOc-EUSAI conference Grenoble, october 2005

p. 1 8 0

Another example is the minimum and maximum interspace (in
pixels) between the composed interactors;
After such considerations, it is easy to understand that each
mobile presentation could contain a varying number of
interactors depending on their interaction resources
consumption.

5. A small example

In order to explain the transformation, we can consider a
specific example of a desktop Web site and see how one of its
pages (see Figure 5) can be transformed using our method.

Figure 4: CUI DOM tree-structure of interface in fig 5.

The automatic transformation starts with the XML
specification of the Concrete Desktop User Interface and
creates the corresponding DOM tree-structure (Figure 4). The
concrete user interface description contains interactors (such
as text, image, text_edit, single_choice, multiple_choice,
control, etc) and composition operators (grouping, ordering,
hierarchy or relation) which define how to structure them. A
composition operator can contain other interactors as well as
other composition operators.
In the example, there is a relation operator, which involves all
the elements of the page: the elementary description interactor
“Download Software”, the elementary text interactor “Please
fill in the form…” and the elements made up of three grouping
operators. In general, the relation operator identifies an
association between the last element and all the other elements
involved in the operator. In this case, the last element is
represented by the composition operator G2, which groups the
“Submit” and “Cancel” buttons. Indeed, they are related to all
the remaining content of the Web page because they allow to
transmit such information to the server. There are also two
grouping operators (G0 and G1) implemented by the two
fieldsets in the user interface in Figure 5.

Overall, this desktop presentation contains 14 interactors,
which require a large amount of interaction resources; too
great to be contained in a single mobile phone presentation,
even a large one (such as a smartphone). Our transformation
divides the “desktop_Download” presentation of the example
into four presentations for mobile devices. Considering the
tree structure of the XML specification of the Concrete User
Interface, the algorithm makes a depth first visit starting with
the root, and generates the mobile presentations by inserting
the elements in each level as long as the sum of the cost of
each interactor (and related composition operators) is lower
than the maximum value supported by a mobile presentation.

Figure 5: Example of desktop Web user interface.

Each composition operator (with its associated elements) that
cannot fit in the presentation (in the example G0 and G1) is
substituted by a link pointing to a mobile presentation
containing their first elements. In this case, the two new links
point to the mobile presentations containing the first element
of G0 (i.e., “Name”) and the first element of G1 (i.e.,
“Language”). So, looking at the example, the algorithm begins
to insert elements in the first mobile presentation, and when it
finds a composition operator (such as G0), it starts to generate
a new mobile presentation with its elements. Continuing the
visit, the algorithm explores the composition operator G0,
which has 8 elements, all of which cannot fit in a single new
presentation. Thus, two mobile presentations are created and
the algorithm distributes the elements equally between them.
The depth first visit of the tree continues and reaches G1. The
algorithm inserts in the main mobile presentation a
corresponding link, pointing to the newly generated mobile
presentation where the elements of G1 are inserted.
The relation operator captures a many-to-one association. The
latter element of such a Relation must be contained in its
entirety in the same presentation as the other elements of the
same Relation because it is the fundamental element defining
the association. Even when the latter element is another
composition of elements (such as G2), it is completely inserted
into the presentation (cost permitting).
The XML specifications of the concrete and abstract interfaces
also contain tags for connections (elementary connections or
complex connections). An elementary connection permits
moving from one presentation to another and is triggered by a
single interactor. A complex connection is triggered when a
boolean condition related to multiple interactors is satisfied.
The transformation creates new connections among the
presentations for the mobile phone following the rules
introduced in the previous section. One rule indicates that
composition operators that are substituted by a link introduce
new connections to presentations containing the first interactor
associated with the composition operators. In the example
(Figure 6), we have two new links “Form – Part 1” and “Form
– Part2”, which support access to the pages associated with the
first interactor of G0 and the first interactor of G1 respectively.
Another rule indicates that when a set of interactors composed
through a specific operator has been split into multiple
presentations we need to introduce new connections to
navigate through the new mobile presentations. In the example
“previous” and “next” links have been introduced
automatically by the environment. These connections are
useful to navigate among presentations that are derived from
the splitting of the G0 elements. There is also the need for
identifying the connections for going back from the new
generated presentations to those containing the links to them.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 1 8 1

In the example, we have the “Form – Part1” and the “Form –
Part2” links contained in the first mobile presentation. Thus,
we need two corresponding “home” links that allow going
back to it (Figure 6).

Figure 6: Mobile pages resulting from the transformation of

the example desktop page.

6. Task-based semantic redesign

We can now analyse a variant of semantic redesign exploiting
knowledge of the tasks involved. This variant is useful when
there are interactors supporting tasks considered suitable for a
desktop system but not for a mobile device, which should
therefore be removed from mobile presentations because of its
limited interaction resources. This variant also calls for
platform task information for successful completion.

Let us consider a desktop user interface (Figure 7) for
subscribing to a service; it is composed of two presentations.
In this case, five tasks: “Select Country”, “Choice Purpose”,
“Select List Subscription”, “Enter Comments” and “Show
multimedia Demo” are supported by the desktop presentation
but may not be suitable for a mobile platform.

Thus, when mobile presentations are produced via redesign of
desktop presentations by analyzing the corresponding tasks,
the interactors associated with these five tasks will not be
inserted in the mobile Concrete User Interface generated.
Conceptually, these five tasks are unsuitable for the mobile
platform (filling in a form through a mobile device should
require a minimal amount of input) and, in addition, tasks such
as “Enter Comments” and “Show multimedia Demo” need a
lot of space and multimedia resources for presentation (not
present in most mobile phones).

This type of analysis can produce more suitable and simpler
mobile presentations and is triggered when the “Task Semantic
Redesign” transformation is selected. To this end, the
transformation considers the type of target mobile device
(classified into the three aforementioned categories) and the
associated task model to be able to identify which tasks are to
be supported. Figure 8 shows the results of task-based
semantic redesign transformation for this example.

Figure 7: Example of desktop presentation.

Figure 8: Mobile presentations after task–based semantic

redesign.

7. A case study

Now we address another, more complex example of redesign
of a desktop interface from the tourism Web site of the French
towns of Sedan and Bouillon, which has been considered in
the CAMELEON project. Managed by the Tourist bureaus,
this Web site promotes tourism in the area. In order to help
tourists prepare their visits, the Web site aims to gather all the
necessary information about Hotels, Restaurants, Camping
sites, Lodgings, Museums and other interesting initiatives held
during different periods of the year such as “the castles
treasure hunt”, “ballet of the raptors” and night visits.
Documentation (books, maps, etc.) and detailed information
about visits (individual or in groups) is also available for
download by filling out the contact form (Figure 9). Without
going into the details of the DOM structure of the XML-based
logical description, Figure 9 shows four parts (corresponding
to four grouping 0,1,2 and 3), contained and grouped together
in the whole desktop page (corresponding to a top level
grouping). In the transformation, the algorithm produces five
mobile presentations (Figure 10) in which we have the home
page mobile_presentation1 containing three links (Sections,
Form and Contact) pointing to mobile presentations
containing respectively elements of groupings 0, 2 and 3. In
mobile_presentation1 the three images of Fort de Sedan
castle, Map of Sedan – Bouillon and Guide of Pays Sedanais,
have been removed because the mobile devices considered
support checkbox with only text choices. Interactors belonging
to grouping 2 occupy too much space to be contained in a
single mobile presentation, so they are distributed in
mobile_presentation3 and mobile_presentation4.
Mobile_presentation2 thus not contain the image of Pass
Muraille (corresponding to a graphical link interactor in the

Joint sOc-EUSAI conference Grenoble, october 2005

p. 1 8 2

desktop platform), because we have addressed mobile devices
supporting only text or button links.

Figure 9: A desktop presentation in the case study.

Figure 10 : The resulting mobile presentations.

8. Conclusions

We have discussed how to support semantic platform redesign.
Examples of application of the approach proposed have been
reported. Such transformation can be used at both design and
run-time. In the case of use at design time, we have indicated
three different design processes that can benefit from its main
features. This is particularly useful for developers who need a
version for mobile devices and would like to have some
support in order to facilitate the process and still obtain
meaningful results. At run-time, the transformation is
integrated in a server, which recognizes the type of platform
accessing the Web site and, in the event it is a mobile device,
transforms the page to adapt it to the new platform.
Currently, our approach works for Web pages that have been
obtained using model-based environments able to first create
their logical descriptions and then the corresponding

implementations or with a server able to take the desktop
interface and generate the corresponding version for mobile
devices exploiting logical descriptions automatically created
using reverse engineering techniques.
In the implementation of our transformations there are still
some issues to be resolved when reversing and redesigning
Web pages containing particular dynamic elements (such as
Flash animations, banners, etc.) or in some cases where
complex layout of pages are dynamically generated (i.e.: using
combination of servlets, jsp, etc.) or when the page layout is
poorly managed (i.e. with nested tables used for layout or
extensive use of frames).

References

[1] Abrams, M., Phanouriou, C., Batongbacal, A., Williams,
S. and Shuster, J. (1999) UIML: An Appliance-Independent
XML User Interface Language, in Proc. EighthWWWConf.
[2] Banavar, G., Bergman L., D., Gaeremynck, Y., Soroker,
D. and Sussman, J. (2004) Tooling and system support for
authoring multi-device applications, in The Journal of
Systems and Software 69. p.227–242.
[3] Bandelloni, R., Mori G., and Paternò, F. (2005) Dynamic
Generation of Migratory Interfaces, in Proceedings
MobileHCI05, Springer Verlag, Salzburg.
[4] Bouillon, L. and Vanderdonckt, J. (2002) Retargeting
Web Pages to other Computing Platforms, in Proceedings of
IEEE 9th Working Conference on Reverse Engineering
WCRE'2002 (Richmond, 29 October-1 November 2002), IEEE
Computer Society Press, Los Alamitos, , p. 339-348.
[5] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L. and Vanderdonckt, J. (2003) A Unifying
Reference Framework for Multi-target User interfaces, in
Interacting with Computers Vol. 15/3, p. 289-308, Elsevier.
[6] Calvary, G., Coutaz, J. and Thevenin, D. (2001) A
Unifying Reference Framework for the Development of Plastic
User Interfaces, in IFIP WG2.7 (13.2) Working Conference,
EHCI01, May, Springer Verlag Publ., LNCS 2254, M. Reed
Little, L. Nigay Eds, Toronto pp.173-192.
[7] Menkhaus, G. and Fischmeister, S. (2003) Evaluation of
User Interface Transcoding Systems, in Proc. Seventh World
Multiconf. Systemics, Cybernetics and Informatics.
[8] Mori, G., Paternò, F. and Santoro, C. (2004) Design and
Development of Multi-Device User Interfaces through
Multiple Logical Descriptions, in IEEE Transactions on
Software Engineering, August, Vol.30, N.8, IEEE Press
pp.507-520,.
[9] Paternò, F. (1999) Model-Based Design and Evaluation
of Interactive Applications, in Springer Verlag, ISBN 1-
85233-155-0.
[10] Szekely, P. (1996) Retrospective and Challenges for
Model-Based Interface Development, in 2nd International
Workshop on Computer-Aided Design of User Interfaces,
Namur University Press, Namur.

