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Abstract
Tracking a face and its facial features in a video sequence is

a challenging problem in computer vision. In this view, we pro-
pose a stochastic tracking system based on a particle-filtering
scheme. In this paradigm, the unobserved state includes global
face pose and appearance parameters coding both shape and tex-
ture information of the face. The adopted observations distribu-
tion is derived from an Active Appearance Model (AAM). The
transition distribution and the particles number are adaptive in
the sense that they are guided by an AAM deterministic search.
This optimization stage adjusts the explored area of the state
space to the quality of the prediction and enables a substantial
gain in computing time. The observation model uses a robust
distance measure in order to account for occlusions. Experi-
ments on real video show encouraging results.

1. Introduction
This work addresses the problem of tracking in a single video
the global motion of a face as well as the local motion of its
inner features, due for instance to expressions or eye blink-
ing. This task is required in many emerging applications,
like surveillance, teleconferencing, emotional computer inter-
faces, human-computer communication, motion capture for
video synthesis, automated lipreading, driver drowsiness mon-
itoring, etc. Face tracking poses challenging problems because
of the variability of facial appearance within a video sequence,
most notably due to changes in head pose, expressions, light-
ing or occlusions. Much research has thus been devoted to the
problem of face tracking, as a specially difficult case of non-
rigid object tracking. Note that in the applications targeted by
this work, the person looks approximately in the direction of the
camera. The face remains thus in a near frontal orientation, so
that a 2D model of the face is assumed to be able to capture the
expected variations.

In the object tracking literature, the following formulation
of the tracking problem is conveniently used: at each time step
t, the goal is to infer the unobserved state of the object, de-
noted xt ∈ X , given all the observed data until time t, de-
noted z1:t ≡ (z1, . . . ,zt). When tracking a face in 2D, the un-
observed state xt includes motion or pose parameters like the
position, scale and orientation of the face; when facial features
are also tracked, the unobserved state should contain parameters
describing the face inner motion. The observed data zt consists
of measurements derived from the current video frame, such as
grey level patches, edges, or color histograms. In order to eval-
uate a hypothesized state, the measurements are actually only
considered in the image area corresponding to the hypothesized
location. For instance, the most natural measurement consists
of the pixel grey level values themselves. Basically, a given
state xt (motion parameters) is then evaluated by comparing the
motion-compensated grey level image patch gimage(zt ,xt) with
a grey level template face patch gmodel .

The tracking task then essentially consists in searching the
current state x̂t ∈ X that matches at best the measurements zt

in the current image. The tracking history x̂1:(t−1) is mainly
used as a prior knowledge in order to search only a small subset
of the state space X .

In a non-probabilistic formulation of the tracking problem,
the state x̂t is usually seeked so as to minimize an error func-
tional d

[
gimage(zt ,xt);gmodel

]
, e.g. an euclidean or robust dis-

tance. Actually, in a tracking setting, the state is supposed to
evolve little between consecutive time steps. The solution is
thus searched as a small displacement from the previous frame
estimation: x̂t = x̂t−1 + ∂̂xt . The optimal displacement is then
typicallly obtained by a gradient-like descent method. The well-
known Lucas-Kanade algorithm is a particular case of such a
formulation, and has been recently generalized in [1]. Instead
of being specified by a single face greylevel template gmodel , the
face model can span a subspace of greylevel patches, learnt by
principal component analysis (PCA) from a face training set.
The error functional is then a distance from the image patch
gimage(zt ,xt) to the face subspace, usually taken to be the dis-
tance to the projection in face subspace. The subspace modeling
allows to account for some variability of the global face appear-
ance.
The eigen-tracking method is based on such a principle [3]. Us-
ing also principal component analysis, the Active Appearance
Models (AAMs) encode the variations of face appearance by
learning the shape and texture variations [4]. They enable thus
the tracking of both global motion and inner features. In the
case of AAMs, the gradient jacobian matrix is pre-computed
in order to save processing time. In practice, tracking using
the deterministic AAM search appears to work well while the
lighting conditions remain stable and only small occlusions are
present. However, large occlusions often make the AAM search
converge to incorrect positions and loose track of the face.

In probabilistic formulations, the hidden state and the ob-
servations are linked by a joint distribution; this statistical
framework offers rich modeling possibilities. A Markovian dy-
namic model describes how the state evolves through time. An
observation model specifies the likelihood of each hypothesised
state, i.e. the probability that the considered state may gener-
ate the observed data. Such generative models represent the
variability in the motion and appearance of the object to track.
Note that even the non-probabilistic minimization of an error
functional can be recast as the maximization of a likelihood:

p(zt |xt) ∝ exp−d
[
gimage(zt ,xt);gmodel

]

Based on such a generative model, Bayesian filtering methods
recursively evaluate the posterior density of the target state at
each time step conditionally to the history of observations until
the current time.

Stochastic implementations of Bayesian filtering are gener-
ally based on sequential Monte Carlo estimation, also known
as particle filtering [5]. Particle filtering approximates the pos-
terior state density by a set of random weighted samples (parti-
cles) at each time step. The CONDENSATION algorithm consists
in propagating this sample set through time using a dynamic
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model and in weighting each sample proportionally to its like-
lihood function value [7]. When compared with the analytical
solution provided by the well-known Kalman filter, particle fil-
tering has two advantages: it is not restricted to the case of linear
and Gaussian models, and it can maintain multiple hypotheses
of the current state, a desirable property when the background
is complex and contains distracting clutter.

For video tracking, the CONDENSATION algorithm was first
proposed in conjunction with edge measurements produced by
an edge detector [7]. Since then, this algorithm has attracted
much interest, and other kinds of measurements have given
valuable variants. For instance, the color histogram yields
fast, deformation- and orientation-robust tracking [8]. How-
ever, since color histograms are global, they do not allow to
track the motion of internal facial features as is the goal here.
A greylevel patch is used as measurement vector by Zhou et al.
[10]. In order to cope with the changing appearance of the face,
the likelihood is taken to be a mixture of three mean appearance
templates, and the parameters of the mixture are re-estimated
during the tracking. Their model considers however only global
face appearance templates in the likelihood, and global motion
parameters in the state vector. Ross et al. [9] propose to con-
stantly update the appearance model of the tracked object to ac-
count for the lighting, expression and pose variations but their
tracker doesn’t handle occlusion well.

The AAM paradigm provides an elegant and simple way
to track both the global pose and the internal facial features.
The idea proposed in this paper consists in combining the AAM
with the CONDENSATION stochastic search in order to augment
its robustness to occlusions. Regarding existing works we are
aware of combining AAM with temporal dynamics, they model
facial behaviours in order to generate video-realistic animated
faces (see e.g. [2]). In those papers, the tracking itself uses the
AAM frame-by-frame search with no temporal dynamics.

In section 2, we recall the main principles of AAMs and
particle filtering, and introduce a few related notations. In sec-
tion 3, we present the proposed tracking algorithm. In section 4,
experimental results are shown on real video. In section 5, we
draw concluding remarks and discuss the perspectives opened
by this work.

2. Background
2.1 Face Active Appearance Models

A face AAM is a statistical model which describes shape and
texture variations of the human face class [4]. The appearance
variability is linearly modelled by a Principal Component Anal-
ysis (PCA) of shape and texture. The set of model parameters
which control the different modes of shape and texture variation
are learned from a training set of annotated images. Each train-
ing image is manually annotated using a set of landmark points
to outline the facial structures.

The face shape consists then of the spatial coordinates of
the landmark points. The training set shapes are aligned to the
Procrustes mean shape of the training set. The corresponding
textures are described by the intensity of the pixels inside the
area delimited by the shapes. These textures are all warped to
the mean shape. A PCA is then applied to shape and texture
data, denoted respectively s and g. Each training face is then
represented by shape and texture model parameters bs, bg:

s = sm +φsbs g = gm +φgbg

where sm, gm are respectively the mean shape and texture, φs,
φg are the eigenvectors of shape and texture covariance matri-
ces. A third PCA is then performed on a concatenated shape
and texture parameters b, to obtain a combined model vector c:

b = φcc

where:
b =

(
Wsbs
bg

)

Ws is an estimated weighting matrix between shape and texture
and φc is a set of eigenvectors.

From the combined appearance model vector c, a new in-
stance of shape and texture can be generated:

smodel(c) = sm +Qsc gmodel(c) = gm +Qgc

In this paper, our approach is tested using person-specific ap-
pearance models. The model is trained using 20 annotated still
images of the person to be tracked. Figure 1 shows the second
mode variation of the combined model vector c through ± 1
standard deviation from the mean for one of the training per-
sons.

Figure 1: Second combined mode of appearance variation for
one training person, i.e. texture instance gmodel(c) warped back
into shape instance smodel(c), with c2 = mean - std, mean, mean
+ std and c = (0,c2,0, . . . ,0)T .

In order to match a target face in a given image, the shape
and texture instances have to be translated, scaled and rotated.
This affine transformation can be represented by a vector of four
2D pose parameters p = (tx,ty,α,θ ). Those parameters denote
respectively the x and y centers of gravity of the shape, and the
scaling factor and inplane rotation relatively to the learnt mean
shape.

The AAM paradigm provides an iterative gradient-like
search technique in order to compute automatically the pose and
appearance parameters (p̂, ĉ) that best approximate the target
face in the image [4]. The minimized criterion is the norm of
the error vector

r(p,c) = gmodel(c)−gim(p,c) (1)

where gmodel(c) denotes the model face texture and gim(p,c)
the image texture sampled at the hypothesized pose p and shape
smodel(c). Starting from an initial guess (p̌, č), the optimal cor-
rections to apply, (∂p,∂c), are linear functions of the error vec-
tor:

∂p = Rp.r(p̌, č) ∂c = Rc.r(p̌, č) (2)

The matrices Rp and Rc can be precomputed from training
data, as in [4].

2.2 CONDENSATION

The CONDENSATION algorithm employs the Monte Carlo tech-
nique of factored sampling in order to recursively approximate
the posterior state density. Approximation is done by means of
the empirical distribution of a system of particles. The parti-
cles explore the state space following independent realizations
from a state evolution model, and are redistributed according to
their consistency with the observations, the consistency being
measured by a likelihood function.

The sketch of the CONDENSATION algorithm is recalled in
Figure 2. For a good introduction, the reader is refered to the
seminal paper of Isard and Blake [7]. At Step 2d, the state
x̂t could also be estimated using the mean x̂t = E [xt |z1:t ] ≈
∑N

n=1 π(n)
t a

(n)
t ; since both estimates appeared very similar in the

experiments, the MAP will be used in the following.
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1. Initialization t = 0: Generate N state samples a
(1)
0 , . . . ,a

(N)
0

according to the prior density p(x0) and assign them iden-
tical weights, π(1)

0 = . . . = π(N)
0 = 1/N.

2. At time step t, we have N weighted particles (a
(n)
t−1,π

(n)
t−1)

that approximate the posterior distribution of the state
p(xt−1|z1:(t−1)) at previous time step.
(a) Resample the particles proportionally to their weights,

i.e. keep only particles with high weights and remove
particles with small ones. Resampled particles have the
same weights.

(b) Draw N particles according to the dynamic model
p(xt |xt−1 = a

(n)
t−1).

These particles approximate the predicted distribution
p(xt |z1:(t−1)).

(c) Weight each new particle proportionally to its likeli-
hood:

π(n)
t =

p(zt |xt = a
(n)
t−1)

∑N
m=1 p(zt |xt = a

(m)
t−1)

(3)

The set of weighted particles approximates the posterior
p(xt |z1:t).

(d) Give an estimate of the state x̂t as the MAP:

x̂t = argmax
xt

p(xt |z1:t) ≈ argmax
a

(n)
t

π(n)
t

Figure 2: CONDENSATION algorithm.

3. Proposed scheme: AAM-based
CONDENSATION

We propose to adapt the CONDENSATION algorithm to our
tracking task in three aspects, each being detailed below:
• the state space spans the global and inner motion of the face;
• the observation model is based on sampled pixel grey level

patches and a previously trained AAM subspace;
• the dynamics are adaptive as in [10].

3.1 State space spans global and local motion

The state vector xt contains the parameters to infer about the
object:
• the face global 2D pose pt = (tx,ty,α,θ )T

• the facial actions, contained in the AAM shape and texture,
which are themselves captured in a compact way by the
combined appearance parameter vector ct . Our experiments
suggest that for a person-specific AAM, retaining only the
first K = 4 modes of the appearance parameter ct allows to
span the facial changes of interest and provides satisfying
tracking results.

The state vector is thus of dimension 4+K = 8:

xt = (pt ,ct)
T

3.2 AAM-based observation model

The observation model consists of the likelihood p(zt |xt), ac-
cording to which the particles are weighted in the formula (3)
of the CONDENSATION algorithm. This likelihood indicates the
probability that a hypothesized state xt = (pt ,ct)

T gives rise to
the observed data. This probability should be high whenever
there is a good match between:
• the image patch sampled at the hypothesized pose and

shape, gim(pt ,ct )
• the hypothesized appearance of the face, given by the model

texture gmodel(ct).

The adopted likelihood function has thus the following form:

p(zt |xt) = C exp−d [gmodel(ct);gim(pt ,ct)] (4)

where C is the normalizing constant of this distribution, and the
texture distance d [; ] is an error measure, summed over all L
pixels of both textures:

d
[
g;g′]=

L

∑̀
=1

ρ
(

g` −g′`
σ`

)
(5)

This error is weighted by the standard deviation σ` of each
pixel, in order to account for face parts with higher variability.
The error function ρ() can be chosen in different ways:
• a simple square error function ρ(x) = 1

2 x2 yields a weighted
euclidean distance d [; ] and a gaussian density p(zt |xt);

• a robust error function can be used instead (see e.g. [6]); in
our experiments, we tested the following function:

ρ(x) =

{ 1
2 x2 if |x| ≤ h

h|x|− 1
2 h2 if |x| > h

(6)

where h is a fixed threshold above which the difference |x|
is considered to be an outlier. Such a robust measure re-
duces the influence of occluded pixels, which would oth-
erwise dominate the total error measure (5) and rule out a
potentially good state candidate.

3.3 Adaptive dynamics

The state transition model p(xt |xt−1) is used in the CONDEN-
SATION algorithm in order to draw the particles approximating
the predicted distribution (Step 2b of Figure 2). Following the
ideas developed in Zhou et al. [10], the dynamics used here are
adaptive by having the following model for state evolution:

xt = x̂t−1 +vt +Stu (7)

where
• x̂t−1 is the estimate of the state vector at the previous time

step,
• the velocity vt indicates the predicted shift in pose / appear-

ance
• the random component u is a vector of 4 + K = 8 inde-

pendent normal random variates having zero mean and unit
variance

• the diagonal matrix St = diag(σ (tx)
t , . . . ,σ (c4)

t ) specifies
the standard deviation of the random draw for each
pose/appearance parameter.
The predicted shift vt = (∂p,∂c)T is obtained by an AAM

search in the current frame1, using the update equations (2). The
search is initialized with the previous state estimate (p̌, č) =
(p̂t−1, ĉt−1) = x̂t−1. The predicted state yielded by this search
will be denoted by x̃t = x̂t−1 +vt . This deterministic search
aims to focus the particle drawing in a region that is most likely
to contain good candidates, and thus reduce the volume of the
state space to explore.

According to the state transition model (7), pose / appear-
ance parameters are drawn around the predicted state x̃t with
dispersions (standard deviations) given by St . Those disper-
sions should be adaptive: the generated particles need to explore
a wide area around x̃t only when the predicted state x̃t gives a
“poor” solution. To measure the quality of the predicted state

1In [10], the shift in global pose vt = ∂p is also computed by using
the current frame, a principle of constant brightness constraint being
applied to calculate the predicted motion.
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x̃t = (p̃t , c̃t), we average the texture error over the L pixels of
the textures:

εt =
2
L

L

∑̀
=1

ρ

(
gmodel
` (c̃t)−gim

` (p̃t , c̃t)

σ`

)
(8)

Since this error is a measure of variance, its square root √εt
is used to scale the standard deviations of the pose/appearance
drawing:

(σ (tx)
t , . . . ,σ (c4)

t )T = Rt(σ
(tx)
0 , . . . ,σ (c4)

0 )T

where (σ (tx)
0 , . . . ,σ (c4)

0 ) are fixed reference standard deviations,
and Rt is a diagonal matrix:

Rt = diag(R(tx)
t , . . . ,R(c4)

t )

where R(i)
t are scaling factors associated to the 8 components of

the state vector (subscripted by the index i) and proportional to
√

εt , with according bounding values [R(i)
min;R(i)

max]:

R(i)
t = max(min(

√
εt ,R

(i)
max),R

(i)
min)

When R(i)
t are large, the predicted distribution has a high

variance and requires therefore a large number of particles to
approximate it. In other words, the larger is the area of the
state space subregion covered by the predicted distribution, the
more particles are needed to explore it. This suggests having an
adaptive number Nt of particles, using the formula:

Nt = N0
1
8

8
∑
i=1

R(i)
t

4. Experimental results
The proposed method was implemented in non-optimized C++
and tested on a PC running WinXP at 2.4 GHz with 512 Mb of
RAM.

Figure 3: AAM-based adaptive CONDENSATION tracking, for
frames 69, 109 and 188. On each image, the drawn shape shows
the estimated state x̂t ; the model and image texture gmodel(ct)
and gim(pt ,ct ) are displayed in the lower right corner

Results are first shown for a video sequence where a face
in near-frontal view undergoes large variations in pose, expres-
sions and lighting (see Figure 3). The tracking of both global
pose and facial features appears satisfying. Setting N0 = 500,
the number of particles Nt evolves between about 20 and 80,
and increases each time the change in pose and/or appearance
is rapid; using such adaptive dynamics allows to process on
average 2 frames per second. This represents a drastic im-
provement over a method using a zero-velocity state evolution
model, which required 1000 particles to successfully track this
sequence (according to experiments not shown here).

The performance of our approach was also tested in pres-
ence of occlusions. We compared it with a purely determin-
istic AAM tracking, where the optimal state configuration is
obtained by x̂t = x̃t = x̂t−1 +vt (using the notations defined

Figure 4: Tracking on a video sequence with occlusions, frames
921, 928 and 940. Top row: deterministic AAM tracking. Bot-
tom row: CONDENSATION based tracking.

in paragraph 3.3). As is highlighted in the top row of Figure
4, when the occlusion occurs, the deterministic search appears
to be trapped in an incorrect local optimum, and the tracking
diverges thus from that moment. This problem is overcome by
the stochastic tracking: the occlusion induces a high texture er-
ror εt for the predicted state x̃t , and consequently the variance
of drawn particles and their number Nt are increased (see the
peaks in Figure 5).

Figure 5: Evolving number of particles Nt on the video se-
quence with occlusions. The nearly full occlusion of frame 921
induces a high peak, while a partial occlusion occurring around
frame 1400 induces a lower peak.

The particles cover thus a greater area of the state space,
hopefully including the correct solution x∗

t ; as those particles
are evaluated by the robust distance likelihood (4) and (5),
the retained solution x̂t stands better chances to be a good
candidate, which allows to correct the deterministic search
(bottom row of Figure 4).

The effectiveness of the appearance model, largely proved
in literature, remains conditioned by the fact that the tracked ap-
pearance must be beforehand learned and modelled. This mod-
elling is sensitive to the recording conditions of the training im-
ages. In order to cure this problem, our current works consist
to replace the AAM by an adaptive appearance estimated on the
fly (on-line).
In this case, the general tracking algorithm principle remains
the same in the sense that we use the same adaptive dynamics
described on paragraph (3.3). However, the likelihood func-
tion, given by the equation (4), is now based on the distance
between the image texture sampled at the hypothesized state
and the model texture estimated and updated on the fly. The
new texture model g f ly(t) is initialized manually using the face
texture in the first image of the video sequence and updated at
each time step t using the following equation:

g f ly(t) = (1−α)g f ly(t −1)+αgim(t, x̂t−1)

where α is a forgetting factor which determines the importance
of the texture model update. gim(t, x̂t−1) is the current image
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texture estimated according to the state hypothesis selected at
t−1, x̂t−1. In this case, the hidden state space encodes the pose
pt and the first four modes of the shape parameters bs obtained
from the face model:

xt = (pt ,bs)
T

This new model is robust vis-a-vis the lighting variations and
occlusion schemes. The tracking problem is adapted to each
target face without being conditioned by a preliminary training
of its appearance. Some results are presented in (Figure 6).

Figure 6: Tracking pose and facial actions when replacing the
texture model previously obtained from the AAM by an adap-
tive texture updated on the fly. Frames 75, 470 and 1310. α =
0.2.

5. Conclusion
For the purpose of tracking the 2D global pose of a face and
its inner facial actions, this paper proposes to combine an adap-
tive particle filtering scheme with an active appearance model.
The state vector is composed of four pose parameters and four
combined appearance parameters. The likelihood measures the
fit between the hypothesized model texture and the image tex-
ture sampled at the hypothesized location and shape; a robust
distance accounts for occluded pixels. Following the ideas of
[10], the dynamics in state space are guided by a deterministic
AAM search; this allows to reduce significantly the number of
particles, which is only increased when the AAM search fails to
converge to a satisfying solution. The experiments show that the
proposed algorithm can successfully track a face and its facial
actions undergoing quick motion and nearly full occlusions.

We also proposed to replace the texture model given by the
AAM by an adaptive texture estimated on the fly to account
for a necessary beforehand learning of the tracked appearance.
Now that a robust tracking system is available, we can study
the recognition of facial actions: the input being given by the
combined appearance parameters at each time step, different
recognition approaches can be tested, from a simple linear dis-
criminant analysis on still frames, to dynamic graphical models.
In this regard, the particle filter paradigm provides a natural in-
ference framework for richer models — for instance, the facial
action to be recognized could be included as a discrete compo-
nent of the state vector.
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