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ABSTRACT a face in 2D, the unobserved statg includes motion or
. . . . . pose parameters like the position, scale and orientation of
Tracking a face and its facial features in a video se- ) .

the face; when facial features are also tracked, the unob-

quenceisa challenging probl_em n cpmputer vision. In this served state should contain parameters describing the face
view, we propose a stochastic tracking system based on &

particle-filtering scheme. In this paradigm, the unobsgrve Inner motion. The observed data consists of measure-

. ments derived from the current video frame, such as grey
state includes global face pose and appearance paramete[gvel atches, edges, or color histograms. In order to evalu
coding both shape and texture information of the face. The P » ©A9€S, g '

adopted observations distribution is derived from an Agtiv ate a hypothesized state, the measurements are actuaily onl

Appearance Model (AAM). The transition distribution and considered in the image area corresponding to the hypothe-

the particles number are adaptive in the sense that they arg,lzed location. For instance, the most natural measurement

. : i f the pixel grey level val hemselves. Bdgijcal

guided by an AAM deterministic search. This optimization con.S|stso the pixe greyieve auest. emselves. Bayica
; { given statex; (motion parameters) is then evaluated by

stage adjusts the explored area of the state space to the qua : . .
) - : L comparing the motion-compensated grey level image patch
ity of the prediction and enables a substantial gain in com- " (20, %) with a grey level template face patg},
puting time. The observation model uses a robust distance>image\%t: Xt _ grey -p _ P -g odel: _
measure in order to account for occlusions. Experiments on  The tracking task then essentially consists in searching
real video show encouraging results. the current stat&; € X that matches at best the measure-
mentsz, in the currentimage. The tracking histaty. ;)
is mainly used as a prior knowledge in order to search only

1. INTRODUCTION a small subset of the state spate

This work addresses the problem of tracking in a single In a non-probabilistic formulation of the tracking prob-
video the global motion of a face as well as the local mo- lem, the state, is usually seeked so as to minimize an er-
tion of its inner features, due for instance to expressions o ror functionald [gimage (2t, X¢); 8mode], €.9. an euclidean
eye blinking. This task is required in many emerging appli- or robust distance. Actually, in a tracking setting, theesta
cations, like surveillance, teleconferencing, emotiaath- is supposed to evolve little between consecutive time steps
puter interfaces, human-computer communication, motion The solution is thus searched as a small displacement from
capture for video synthesis, automated lipreading, driver the previous frame estimatiof; = %X;_; + 5x\t The opti-
drowsiness monitoring, etc. Face tracking poses challeng-mal displacement is then typicallly obtained by a gradient-
ing problems because of the variability of facial appeaeanc like descent method. The well-known Lucas-Kanade algo-
within a video sequence, most notably due to changes inrithm is a particular case of such a formulation, and has
head pose, expressions, lighting or occlusions. Much re-been recently generalized in [1]. Instead of being speci-
search has thus been devoted to the problem of face trackfied by a single face greylevel templagg,.q.;, the face
ing, as a specially difficult case of non-rigid object tramki model can span a subspace of greylevel patches, learnt by
Note that in the applications targeted by this work, the per- principal component analysis (PCA) from a face training
son looks approximately in the direction of the camera. The set. The error functional is then a distance from the image
face remains thus in a near frontal orientation, so that a 2D patchg;,,q4e(2:, x¢) t0 the face subspace, usually taken to
model of the face is assumed to be able to capture the exbe the distance to the projection in face subspace. The sub-
pected variations. space modeling allows to account for some variability of the
In the object tracking literature, the following formula- global face appearance.
tion of the tracking problem is conveniently used: at each The eigen-tracking method is based on such a principle [3].
time stept, the goal is to infer the unobserved state of the Using also principal component analysis, the Active Ap-
object, denoteck; € X, given all the observed data un- pearance Models (AAMs) encode the variations of face ap-
til time ¢, denotedz,.;, = (z1,...,2:). When tracking pearance by learning the shape and texture variations [4].
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They enable thus the tracking of both global motion and in- account for the lighting, expression and pose variatiorts bu
ner features. In the case of AAMs, the gradient jacobian their tracker doesn’t handle occlusion well.

matrix is pre-computed in order to save processing time. In  The AAM paradigm provides an elegant and simple way
practice, tracking using the deterministic AAM search ap- to track both the global pose and the internal facial feature
pears to work well while the lighting conditions remain sta- The idea proposed in this paper consists in combining the
ble and only small occlusions are present. However, large AAM with the CONDENSATION stochastic search in order
occlusions often make the AAM search converge to incor- to augment its robustness to occlusions. Regarding exist-

rect positions and loose track of the face. ing works we are aware of combining AAM with temporal
In probabilistic formulations, the hidden state and the dynamics, they model facial behaviours in order to gener-
observations are linked by a joint distribution; this sttial ate video-realistic animated faces (see e.g. [2]). In those

framework offers rich modeling possibilities. A Markovian papers, the tracking itself uses the AAM frame-by-frame
dynamic model describes how the state evolves through timesearch with no temporal dynamics.

An observation model specifies the likelihood of each hy- In section 2, we recall the main principles of AAMs and
pothesised state, i.e. the probability that the considetate particle filtering, and introduce a few related notations. |
may generate the observed data. Such generative modelsection 3, we present the proposed tracking algorithm. In
represent the variability in the motion and appearanceef th section 4, experimental results are shown on real video. In

object to track. Note that even the non-probabilistic mini- section 5, we draw concluding remarks and discuss the per-
mization of an error functional can be recast as the maxi- spectives opened by this work.
mization of a likelihood:

p(zt ‘Xt) X exp —d [gimage (Zt7 Xt); gmodel] 2. BACKGROUND

Based on such a generative model, Bayesian filtering meth-2 1. Face Active Appearance Models
ods recursively evaluate the posterior density of the targe
state at each time step conditionally to the history of obser A face AAM is a statistical model which describes shape
vations until the current time. and texture variations of the human face class [4]. The

Stochastic implementations of Bayesian filtering are gen-@ppearance variability is linearly modelled by a Principal
erally based on sequential Monte Carlo estimation, alsaskno Component Analysis (PCA) of shape and texture. The set
as particle filtering [5]. Particle filtering approximatéset  Of model parameters which control the different modes of
posterior state density by a set of random weighted sam-shape and texture variation are learned from a training set
ples (particles) at each time step. Th@MDENSATION of annotated images. Each training image is manually an-
algorithm consists in propagating this sample set throughnotated using a set of landmark points to outline the facial
time using a dynamic model and in weighting each sample structures.
proportionally to its likelihood function value [7]. When The face shape consists then of the spatial coordinates
compared with the analytical solution provided by the well- of the landmark points. The training set shapes are aligned
known Kalman filter, particle filtering has two advantages: to the Procrustes mean shape of the training set. The corre-
itis not restricted to the case of linear and Gaussian mpdels sponding textures are described by the intensity of thdpixe
and it can maintain multiple hypotheses of the current state inside the area delimited by the shapes. These textures are
a desirable property when the background is complex andall warped to the mean shape. A PCA is then applied to
contains distracting clutter. shape and texture data, denoted respectivelydg. Each

For video tracking, the GNDENSATION algorithm was training face is then represented by shape and texture model
first proposed in conjunction with edge measurements pro-parameterb, b:
duced by an edge detector [7]. Since then, this algorithm
has attracted much interest, and other kinds of measure- S=8m+ @by g8=gm+ dgby
ments have given valuable variants. For instance, the color )
histogram vyields fast, deformation- and orientation-gibu Wheres,, g, are respectively the mean shape and texture,
tracking [8]. However, since color histograms are global, ?s: ¢4 @ré the eigenvectors of shape and texture covariance
they do not allow to track the motion of internal facial fea- mMatrices. A third PCA is then performed on a concatenated
tures as is the goal here. A greylevel patch is used as meaShape and texture parametbrso obtain a combined model
surement vector by Zhou et al. [10]. In order to cope with Vectore:

the changing appearance of the face, the likelihood is taken b = ¢.c
to be a mixture of three mean appearance templates, and .
. : ) where:
the parameters of the mixture are re-estimated during the W.b.
tracking. Their model considers however only global face b= ( ]; § )
g

appearance templates in the likelihood, and global motion
parameters in the state vector. Ross et al. [9] propose to conW is an estimated weighting matrix between shape and
stantly update the appearance model of the tracked object tdexture andp. is a set of eigenvectors.
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From the combined appearance model veetaa new
instance of shape and texture can be generated:

Smodel (C) =Sy + Qsc Emodel (C) =gm + Qgc

In this paper, our approach is tested using person-specific’zt = E[x[21.]

Grenoble, October 2005

The sketch of the GNDENSATIONalgorithm is recalled
in Figure 2. For a good introduction, the reader is ref-
ered to the seminal paper of Isard and Blake [7]. At Step
2d, the statex; could also be estimated using the mean

SN 7™al™; since both estimates

~
~

appearance models. The model is trained using 20 anno@Ppeared very similar in the experiments, the MAP will be
tated stillimages of the person to be tracked. Figure 1 showsuSed in the following.

the second mode variation of the combined model vector

through+ 1 standard deviation from the mean for one of
the training persons.

- =

Yk

.8 .

W ot

“—’

Fig. 1. Second combined mode of appearance variation for
one training person, i.e. texture instamgg,q.:(c) warped
back into shape instaneg,,q.:(c), with co = mean - std,
mean, mean + std and= (0, ¢, 0, ...,0)7.

In order to match a target face in a given image, the
shape and texture instances have to be translated, scaled ar
rotated. This affine transformation can be represented by g
vector of four 2D pose parametgss= (t,,t,, a, ¢). Those
parameters denote respectively thandy centers of grav-
ity of the shape, and the scaling factor and inplane rotation
relatively to the learnt mean shape.

The AAM paradigm provides an iterative gradient-like
search technique in order to compute automatically the pose
and appearance parametgpsc) that best approximate the
target face in the image [4]. The minimized criterion is the
norm of the error vector

@)

whereg,,.q: (¢) denotes the model face texture ang, (p, ¢)
the image texture sampled at the hypothesized poaad
shapes,,,qci(c). Starting from an initial gues®, ¢), the
optimal corrections to applydp, dc), are linear functions
of the error vector:

r(p, C) = g'rrwdel(c) - gim(pa C)

1. Initialization ¢
ad, ... a®
and assign them identical weights,

TF(()N) =1/N.

0: GenerateN state sample

according to the prior density(xo)

(1)
0

. At time stept, we have N weighted particle
(al™,, 7{™)) that approximate the posterior distri
tion of the statep(x;_1|z1.¢—1)) at previous time

step.

\*2

A

(a) Resample the particles proportionally to their
weights, i.e. keep only particles with high
weights and remove particles with small ones.

N Resampled particles have the same weights,.

(b) Draw N particles according to the dynami
modelp(x,|x;_1 = al™,).
These particles approximate the predicted

tribution p(x¢|z1.¢—1))-

dis-

—

(©) i

Weight each new particle proportionally to
likelihood:

S

= agﬁ)l

)

p(Ze|xs
(m)

N
> om=1 P(Ze|xe = ;74

71_t(n) _

®)
)

The set of weighted particles approximates
posteriom(x¢|z1.¢).

(d) Give an estimate of the state as the MAP:

the

(n)

%X; = argmax p(x¢|z1.+) & arg max 7,
Xt n)

ay

Op =Rp.r(p,¢) dc =Re.r(p,¢) 2)

The matriceR, andR. can be precomputed from training
data, as in [4].

2.2. CONDENSATION

The CONDENSATION algorithm employs the Monte Carlo
technique of factored sampling in order to recursively ap-
proximate the posterior state density. Approximation iselo
by means of the empirical distribution of a system of par-
ticles. The particles explore the state space following in-
dependent realizations from a state evolution model, and
are redistributed according to their consistency with the o
servations, the consistency being measured by a likelihood
function.

Fig. 2. CONDENSATIONalgorithm.

3. PROPOSED SCHEME: AAM-BASED
CONDENSATION

We propose to adapt thedBIDENSATION algorithm to our
tracking task in three aspects, each being detailed below:

¢ the state space spans the global and inner motion of
the face;

o the observation model is based on sampled pixel grey
level patches and a previously trained AAM subspace;

e the dynamics are adaptive as in [10].
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whereh is a fixed threshold above which the differ-
encelz| is considered to be an outlier. Such a ro-
bust measure reduces the influence of occluded pix-
els, which would otherwise dominate the total error
measure (5) and rule out a potentially good state can-
didate.

3.1. State space spans global and local motion

The state vectok; contains the parameters to infer about
the object:

e the face global 2D posp; = (t,,ty, @, 0)"

e the facial actions, contained in the AAM shape and
texture, which are themselves captured in a compact
way by the combined appearance parameter vector
c;. Our experiments suggest that for a person-specific The state transition modelx;|x;_1) is used in the ©N-

3.3. Adaptive dynamics

AAM, retaining only the first’ = 4 modes of the ap-

DENSATION algorithm in order to draw the particles approx-

pearance parametey allows to span the facial changes imating the predicted distribution (Step of Figure 2). Fol-

of interest and provides satisfying tracking results.

The state vector is thus of dimensién- K = &:
Xt = (pt; Ct)T

3.2. AAM-based observation model

The observation model consists of the likelihggd;|x;),
according to which the particles are weighted in the for-
mula (3) of the @NDENSATION algorithm. This likeli-
hood indicates the probability that a hypothesized state
(pt,c:)T gives rise to the observed data. This probability
should be high whenever there is a good match between:

¢ the image patch sampled at the hypothesized pose and

shapeg;., (p:, ct)

¢ the hypothesized appearance of the face, given by the

model textures,,,oqe: (¢t )-

The adopted likelihood function has thus the following form

(4)

whereC is the normalizing constant of this distribution, and
the texture distancé[;] is an error measure, summed over
all L pixels of both textures:
9e— 9,
o)

This error is weighted by the standard deviatignof each
pixel, in order to account for face parts with higher variabi
ity. The error functiorp() can be chosen in different ways:

p(zt|xt) =(C exp—d [gmodel(ct)§ 8im (pt7 Ct)}

®)

e a simple square error functignz) = 122 yields a
weighted euclidean distandsg; ] and a gaussian den-

sity p(z¢|x¢);

e a robust error function can be used instead (see e.g.

[6]); in our experiments, we tested the following func-
tion:

if |z| <h
(6)

px) = Lo
hlz| — Lh? if 2] > b

lowing the ideas developed in Zhet al. [10], the dynam-
ics used here are adaptive by having the following model for
state evolution:

Xt = )A(t_l + v+ Stu

(7)
where

e X;_ 1 isthe estimate of the state vector at the previous
time step,

o the velocityv, indicates the predicted shift in pose /
appearance

e the random componentis a vector oft + K = 8 in-
dependent normal random variates having zero mean
and unit variance

o the diagonal matri$; = diag(at(t””), ce at(c‘*)) spec-
ifies the standard deviation of the random draw for
each pose/appearance parameter.

The predicted shify; = (dp,dc)? is obtained by an
AAM search in the current frameusing the update equa-
tions (2). The search is initialized with the previous state
estimatgp, ¢) = (p:t—1,¢:—1) = X;—1. The predicted state
yielded by this search will be denoted Ry = %, 1 + vy.
This deterministic search aims to focus the particle drgwin
in a region that is most likely to contain good candidates,
and thus reduce the volume of the state space to explore.

According to the state transition model (7), pose / ap-
pearance parameters are drawn around the predicteckstate
with dispersions (standard deviations) given$yy Those
dispersions should be adaptive: the generated partictes ne
to explore a wide area arourid only when the predicted
statex; gives a “poor” solution. To measure the quality of
the predicted stat&;, = (p¢,¢;), we average the texture

model

error over thel, pixels of the textures:
2 & g
_ i
=730 ) ®

1In[10], the shiftin global pose; = dp is also computed by using the
current frame, a principle of constant brightness congttzéing applied
to calculate the predicted motion.

(ét) - gzm(f)t,ét)
gy
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Since this error is a measure of variance, its square,ypt
is used to scale the standard deviations of the pose/appeara
drawing:

(Ut(tm), e ,JEC“))T = Rt(a(()t”), . ,(T(()c4))T

where(aét’”), NN a((f“) are fixed reference standard devia-

tions, andR; is a diagonal matrix:

R, = diag(REtz), ... ,REC“))

whereRf) are scaling factors associated to the 8 compo-

nents of the state vector (subscripted by the injlend pro- ~ Fig. 4. Tracking on a video sequence with occlusions,

portional to, /&, with according bounding Valuég(i) . 57?(”;]2 framc_as 921, 928 and 940. Top row: determinis_tic AAM
tracking. Bottom row: @ NDENSATION based tracking.

min?

Rgi) = max(min(,/e7, R ),R(i)

max mzn)

The performance of our approach was also tested in pres-
ence of occlusions. We compared it with a purely determin-
istic AAM tracking, where the optimal state configuration
is obtained by, = x; = %;_1 + v; (using the notations
defined in paragraph 3.3). As is highlighted in the top row
of Figure 4, when the occlusion occurs, the deterministic
search appears to be trapped in an incorrect local optimum,

When RE” are large, the predicted distribution has a
high variance and requires therefore a large number ofparti
cles to approximate it. In other words, the larger is the area
of the state space subregion covered by the predicted dis
tribution, the more particles are needed to explore it. This
suggests having an adaptive numBéarof particles, using

the formula: 8 and the tracking diverges thus from that moment. This prob-
N, = Nol ZREU lem is overcome by the stochastic tracking: the occlusion
8 P induces a high texture erreg for the predicted stat&,,
and consequently the variance of drawn particles and their
4. EXPERIMENTAL RESULTS numberN, are increased (see the peaks in Figure 5).

The proposed method was implemented in non-optimized
C++ and tested on a PC running WinXP at 2.4 GHz with
512 Mb of RAM.

HUMBER OF PARTICLES

Fig. 5. Evolving number of particlesV; on the video se-

Fig. 3. AAM-based adaptive GNDENSATIONtracking, for guence with occlusions. The nearly full occlusion of frame

frames 69, 109 and 188. On each image, the drawn shap®21 induces a high peak, while a partial occlusion occurring

shows the estimated state; the model and image texture around frame 1400 induces a lower peak.

Emodei(€t) @andg;., (pt, c;) are displayed in the lower right

corner The particles cover thus a greater area of the state space,

hopefully including the correct solutiax}; as those parti-

Results are first shown for a video sequence where a facecles are evaluated by the robust distance likelihood (4) and

in near-frontal view undergoes large variations in pose, ex (5), the retained solutiot; stands better chances to be a

pressions and lighting (see Figure 3). The tracking of both good candidate, which allows to correct the deterministic

global pose and facial features appears satisfying. $ettin search (bottom row of Figure 4).

Ny = 500, the number of particlesV; evolves between

about 20 and 80, and increases each time the change in The effectiveness of the appearance model, largely proved

pose and/or appearance is rapid; using such adaptive dyin literature, remains conditioned by the fact that thekeatc

namics allows to process on average 2 frames per secondappearance must be beforehand learned and modelled. This

This represents a drastic improvement over a method usingnodelling is sensitive to the recording conditions of tlartr

a zero-velocity state evolution model, which required 1000 ing images. In order to cure this problem, our current works

particles to successfully track this sequence (according t consist to replace the AAM by an adaptive appearance esti-

experiments not shown here). matedon the fly(on-line).
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In this case, the general tracking algorithm principle re- We also proposed to replace the texture model given by
mains the same in the sense that we use the same adaptithe AAM by an adaptive texture estimated on the fly to ac-
dynamics described on paragraph (3.3). However, the like-count for a necessary beforehand learning of the tracked ap-
lihood function, given by the equation (4), is now based on pearance. Now that a robust tracking system is available,
the distance between the image texture sampled at the hywe can study the recognition of facial actions: the input be-
pothesized state and the model texture estimated and uping given by the combined appearance parameters at each
dated on the fly. The new texture modgl,(¢) is initial- time step, different recognition approaches can be tested,
ized manually using the face texture in the first image of the from a simple linear discriminant analysis on still frames,
video sequence and updated at each time &teging the to dynamic graphical models. In this regard, the particle
following equation: filter paradigm provides a natural inference framework for
richer models — for instance, the facial action to be recog-

9ry(t) = (1 —a)gpy(t = 1) + agim(t, Xi—1) nized could be included as a discrete component of the state

Vi
whereq is a forgetting factor which determines the impor-

tance of the texture model updatg,,, (¢,%;_1) is the cur-
rent image texture estimated according to the state hypoth-
esis selected dt— 1, X;_;. In this case, the hidden state
space encodes the pope and the first four modes of the
shape parametets, obtained from the face model:

Xt = (pta bG)T

This new model is robust vis-a-vis the lighting variations
and occlusion schemes. The tracking problem is adapted to
each target face without being conditioned by a preliminary
training of its appearance. Some results are presented in
(Figure 6).

Fig. 6. Tracking pose and facial actions when replacing
the texture model previously obtained from the AAM by
an adaptive texture updated on the fly. Frames 75, 470 and
1310.a=0.2.

5. CONCLUSION

For the purpose of tracking the 2D global pose of a face
and its inner facial actions, this paper proposes to combine
an adaptive particle filtering scheme with an active appear-
ance model. The state vector is composed of four pose pa-
rameters and four combined appearance parameters. The
likelihood measures the fit between the hypothesized model
texture and the image texture sampled at the hypothesized
location and shape; a robust distance accounts for occluded

pixels. Following the ideas of [10], the dynamics in state [10]

space are guided by a deterministic AAM search; this al-
lows to reduce significantly the number of particles, which
is only increased when the AAM search fails to converge to
a satisfying solution. The experiments show that the pro-
posed algorithm can successfully track a face and its facial
actions undergoing quick motion and nearly full occlusions
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