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Abstract
We perform continuous activity recognition using only two
wrist-worn sensors - a 3-axis accelerometer and a microphone.
We build on the intuitive notion that two very different sensors
are unlikely to agree in classification of a false activity. By com-
paring imperfect, jumping window classifications from each of
these sensors, we are able discern activities of interest from null
or uninteresting activities. Where one sensor alone is unable to
perform such partitioning, using comparison we are able to re-
port good overall system performance of up to 70% accuracy.
In presenting these results, we attempt to give a more-in depth
visualization of the errors than can be gathered from confusion
matrices alone.

1. Introduction
Hand actions play a crucial role in most human activities. As
a consequence, detecting and recognising such activities is an
important aspect of context recognition. It is also one of the
most difficult. This is particularly true for continuous recogni-
tion where a set of relevant hand motions (gestures) need to be
spotted in a data stream. The difficulties of such recognition
stem from two things. First, due to a large number of degrees
of freedom, hand motions tend to be very diverse. The same
activity might be performed in many different ways even by a
single person. Second, in terms of motion, hands are the most
active body parts. We move our hands continuously, mostly in
an unstructured way, even when not doing anything particular
with them. In fact in most situations such unstructured motions
by far outnumber gestures that are relevant for context recogni-
tion. This means that a continuous gesture spotting applications
has to deal with a zero, or NULL, class that is difficult to model
while taking up most of the signal.

1.1 Paper Contributions

Our group has invested a considerable amount of work into
hand gesture spotting. To date this work has focused on us-
ing several sensors distributed over the user’s body with the
aim of maximising recognition performance. This included
motion sensors (3 axis accelerometer, 3 axis gyroscopes and 3
axis magnetic sensors) on the upper and lower arm [5], micro-
phone/accelerometer combination on the upper and lower arm
[7] as well as, more recently, a combination of several motion
sensors and ultrasonic location devices [10].

This paper investigates the performance of a gesture spot-
ting system based on a single, wrist mounted device. The idea
behind the work is that wrist mounted accessories are broadly
accepted and worn by most people on daily basis. In contrast,
systems that require the user to put on several sensors at loca-
tions such as the upper arm may have problems with user ac-
ceptance.

The downside of this approach is the reduced amount of
information available for the recognition. This means, for ex-
ample, that the method of analysing sound intensity differences
between microphones on different parts of the body, which was
the cornerstone of our previous signal partitioning work, is not

feasible. It is also important that the devices used have small
form factor and thus do not require too much computing power
so as to keep battery size small.

The main contribution of the paper is to show that, for a
certain subset of hand based activities - the use of tools in a
woodwork assembly scenario -, reasonable gesture spotting re-
sults can be achieved using only a combination of microphone
and 3 axis accelerometer mounted on the wrist.

The method relies on simple jumping window sound pro-
cessing algorithms that have been shown [15] to require only
minimal computational and communication performance.

For the acceleration, inference on Hidden Markov Models
(HMM) is used, again on jumping windows across the data. The
results from the two classifiers (sound and acceleration) are then
combined to produce a final output. The aim is to show that
although individual sensor classifiers have no way of separating
valid activities from NULL, their combination provides a means
of doing so.

This approach is verified using data which was gathered
from an extended, multi-subject, run of the wood workshop as-
sembly experiment first introduced in [7]. The results are pre-
sented using both traditional confusion matrices, plus a novel
visualisation method that provides a more in-depth understand-
ing of the error types.

1.2 Related Work

Most of the existing work on gesture recognition involves the
use of computer vision [17, 19, 20, 14]. Regarding non-visual
sensors, previous setups and algorithms have proved success-
full either for segmented recognition, or for scenarios where the
NULL class was easy to model or not relevant (e.g. recognition
of standing, sitting, walking, running [8, 13, 18] using acceler-
ation sensors.) In the work of [11, 2] sound was exploited for
performing situation analysis. Sound was also used in [1] to
improve the performance of hearing aids. Complimentary in-
formation from sound and acceleration has been used before to
detect defects in material surfaces [21], but no work, of which
the authors are aware, use these for recognition of complex ac-
tivities.

2. Experiment
The dataset was gathered from experiments based on a mock
assembly scenario involving the use of hand held and hand op-
erated tools and machines in a wood workshop. This setup was
previously used for our earlier study on activity recognition, and
was chosen as a suitable testbench for the continuing work into
the development of wearable computers for maintenance and
assembly applications 1. Though obtained from a fairly con-
strained environment, the diverse selection of hand and tool ac-
tivities provides a useful dataset for evaluating activity recogni-
tion techniques. Gestures involving hand interaction with tools

1The development of such systems is the aim of the European Union
WearIT@Work project in which our group participates.
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Figure 1: The wood workshop with (1) grinder, (2) drill, (3) file
and saw, (4) vise, and (5) cabinet with drawers

generally have both a characteristic motion and a correspond-
ing sound component, from which recognition using these two
different sensing modalities is particularly suited.

Figure 1 shows the environment and tools used. The 9 activ-
ities which we set out to spot were: hammering, sawing, filing,
using a machine drill, sanding, using a machine grinder, screw-
driving, opening and closing a vise, and opening and closing
a drawer. All other activities and movements were labelled as
NULL.

Specifically, the assembly sequence consisted of sawing a
piece of wood, drilling a hole in it, grinding a piece of metal,
attaching it to the piece of wood with a screw, hammering in
a nail to connect the two pieces of wood, and then finishing
the product by smoothing away rough edges with a file and a
piece of sandpaper. The wood was fixed in the vise for saw-
ing, filing, and smoothing (and removed whenever necessary).
The test subject moved between areas in the workshop between
steps. Also, whenever a tool or an object (nail screw, wood)
was required, it was retrieved from its drawer in the cabinet and
returned after use.

The first dataset, as reported in the earlier study, involved
only a single subject performing this sequence. The experiment
has since been revised to include more subjects (1 female and
4 male), with each subject repeating the sequence between 3
and 6 times, thus producing a total dataset of (3+3+4+4+6)=20
recordings. (Some subjects performed more repetitions than
others due to a combination of technical problems in recording
and availability.) Each sequence lasted on average five minutes,
bringing the total dataset size to 6014 seconds.

The data was collected using a Sony microphone and a 3-
axis accelerometer (from the ETH PadNET sensor network [6]).
These were strapped to each subject’s right wrist - in the current
set, all subjects are right handed. (Readings were also taken
from each subject’s upper arm, though this data is not used
here.)

3. Recognition Method
We apply jumping windows of length wlen seconds across all
the data in increments of w jmp. At each step we apply an LDA
based classification on the sound data, and an HMM classifica-
tion on the sound. The ’soft’ results of each classification - LDA
distances for sound and HMM class likelihoods for acceleration
- are converted into class rankings, and these are fused together
using one of two methods: comparison of top rank (COMP),
and a method using Logistic Regression (LR).

3.1 Frame by Frame Sound Classification Using LDA

Frame-by-frame sound classification was carried out using pat-
tern matching of features extracted in the frequency domain.
Each frame represents a window on 100ms of raw audio data.
These windows are then jumped over the entire dataset in 25ms
increments, producing a 40Hz output.

The audio stream was taken at a sample rate of 2kHz from
the wrist worn microphone. From this a Fast Fourier Transform
(FFT) was carried out on each 100ms window, generating a 100
bin output vector (1/2∗ f s∗ f f twnd = 1/2∗2∗100 = 100bins).

Making use of the fact that our recognition problem re-
quires a small finite number of classes, we applied Linear Dis-
criminant Analysis (LDA)[3] to reduce the dimensionality of
these FFT vectors from 100 to #Classes−1.

Classification of each frame can then be carried out using
a simple Euclidean minimum distance calculation. Whenever
we wish to make a decision, we simply calculate the incoming
point in LDA space and find its nearest class mean value from
the training dataset. This saving in computation complexity by
dimensionality reduction comes at the comparatively minor cost
of requiring us to compute and store a set of LDA class mean
values from which the LDA distances might be obtained.

Equally, a nearest neighbour approach might be used. For
the experiment described here however, Euclidean distance was
found to be sufficient.

A larger window, wlen, was moved over the data in w jmp
second increments. This relatively large window was chosen to
reflect the fact that all of the activities we are interested in occur
at the timescale of at least several seconds. On each window we
compute a sum of the constituent LDA distances for each class.
From these total distances, we then rank each class according to
minimum distance. Classification of the window is then simply
a matter of choosing the top ranking class.

3.2 HMM Acceleration Classification

In contrast to the approach used for sound recognition, we
employed model based classification, specifically the Hidden
Markov Model (HMM), for classifying accelerometer data[12,
16]. (The implementation of the HMM learning and inference
routines for this experiment was provided courtesy of Kevin P.
Murphy’s HMM Toolbox for matlab [9].)

The features used to feed the HMM models were calcu-
lated from jumping 100ms windows on the x,y, and z axis of the
100Hz sampled acceleration data. These windows were moved
over the data in 25ms increments, producing the following fea-
tures, output at 40Hz:
• Mean of x-axis
• Variance of x-axis
• A count of the number of peaks (for x,y,z)
• Mean amplitude of the peaks (for x,y,z)

Finally we globally standardised the features so as to avoid nu-
merical complications with the model learning algorithms in
matlab.

In previous work we employed single Gaussian observation
models, but this was found to be inadequate for some classes
unless a large number of states were used. Intuitively, the de-
scriptive power of a mixture of Gaussian is much closer to ’re-
ality’ than only one, and so for these classes a mixture model
was used. The specific number of mixtures and the number of
hidden states used were individually tailored by hand for each
class. The parameters were obtained from the data using leave-
one-out training.

A window of wlen, in w jmp increments, was run over the
acceleration features, and the corresponding log likelihood for
each HMM class model calculated.

Classification is carried out for each window by choosing
the class which produces the largest log likelihood given the
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stream of feature data from the test set.

3.3 Fusion of classifiers

3.3.1 Comparison of top choices (COMP)

The top rankings from each of the sound and acceleration classi-
fiers for a given jumping window segment are taken, compared,
and returned as valid if they agree. Those where both classifiers
disagree are thrown out - classified as null.

3.3.2 Logistic regression (LR)

The main problem with a direct comparison of top classifier
rankings is that it fails to take into account cases where one clas-
sifier might be more reliable than another at recognising particu-
lar classes. If one classifier reliably detects a class, but the other
classifier fails to, perhaps relegating the class to second or third
rank, then a basic comparison would just assign null. For such
cases, then a ’softer’ method of classifier fusion is needed - one
that takes into account the different rankings of each classifier.

In the work of Ho et. al. [4], three methods for classi-
fier fusion based on class rankings are presented and evaluated:
Highest Rank, whereby each class is assigned a rank according
to the highest rank assigned to it by any of the classifiers; Borda
count, whereby each class is ranked according to the total num-
ber of classes ranking below it by each classifier; and Logistic
Regression (LR), a method based on the Borda count, but which
estimates weights for each class combination using regression.

Of the methods presented, only one of them, the Logistic
Regression (LR) makes sense to apply here, as it is the only one
which provides the scope to deal with assigning results to null.

The basic motivation behind LR is to assign a score for each
class and every combination of classifier rankings. However,
such a scoring would soon become computationally prohibitive,
even for a moderate number of classes and classifiers. Instead,
LR makes use of a linear function to estimate the likelihood
of whether a class is correct or not for a given set of rankings.
Such a regression function, estimating a binary outcome with
P(true|X ,class) or P( f alse|X ,class), is far simpler to compute.
So for each class a function is computed: L(X) = α + ∑m

i=1 βixi
where X = [x1,x2, ..xm] are the rankings of the class for each of
the m classifiers, and α , β the logistic regression coefficients.
These coefficients are computed by applying a suitable regres-
sion fit using the correctly classified ranking combinations from
the training data. Again the training is performed on a leave-
one-out basis.

So that unlikely combinations are assigned to null, we intro-
duce an empirically obtained threshold on L(x) for each class.
Of the classes which fall below this threshold, the most likely
L(x) value is taken and re-assigned to the ’null class’. This
means that if all classes fall below their threshold for a given
ranking combination, then the null will take top ranking.

Classification can then be carried out by estimating L(X)
for each class on the input rankings, comparing with the null
threshold, and then ranking the values obtained. The final clas-
sification result can then be taken from the highest rank.

4. Results
The system was initially evaluated across sweeps of the two
main parameters, window length wlen and window jump length
w jmp. From these sweeps, setting both wlen and w jmp to 2 sec-
onds was found to produce favourable results. All further anal-
ysis was carried out with these parameters set.

Both the LDA and HMM methods require training of pa-
rameters using data. This was carried out in a user-dependent,
leave-one-out fashion. This is where, for each user, one set is
put aside for testing while the remaining sets (from the same
user) are used for training.

We applied HMM classification to the accelerometer data,
and LDA minimum distance to the audio. This was applied to
all 20 sets of data. Typical results from one of these sets is
plotted in Figures 2, with class predictions compared alongside
the hand-labelled ground truth.
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Figure 2: Plot of a typical classifier output sequence showing
the ground truth, the sound predictions, and acceleration pre-
dictions (1 output sample every 2 seconds)
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Figure 3: Plot of output sequences of sound and acceleration
predictions combined using Comparison method, and LR, ver-
sus ground truth

With each of the 2 second segments, we performed firstly
the classification comparison fusion, and then the logistic re-
gression using the rankings obtained from the HMM likelihood
and LDA distance information.

On first run, the LR method continued to produce a large
number of insertions - primarily from the class ’screwdriving’.
This was due to the fact that this is comparatively silent class,
and as the training data consisted mostly of noisy, positive class
examples (at no stage do we use NULL labelled data for train-
ing), it winds up being a ’catch all’ class for non-activities
which should have been assigned NULL. Reducing the weights
of the ranking combinations for this class during training helps
to alleviate this problem.

The final predictions from each of these, compared along-
side the ground truth, are shown in 3.

Lacking any ability to distinguish valid activities from
NULL, the constituent classifiers, as expected, produce much
noise. With LDA tending to misclassify NULL as a quiet class,
such as screwdriving; and HMM generally giving random mis-
classifications. Both perform relatively well when set against
known system classes however, and this is reflected in the per-
formance of both the comparison and LR predictions.
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Plotting predictions might allow us to gain a rough under-
standing of how well the system performs for a given set, but
for a measure across all the data we require a more quantita-
tive means. For this we perform a direct frame by frame com-
parison of the predictions with the ground truth, and fill out a
confusion matrix of the results. We sum the matrices across all
test datasets and present the total matrix, for each recognition
method, in Tables 1. Class by class recognition rates, stating
how well the system returns true frames are given to the right
of these tables. Also shown is a summary of the False Positive
(FP), False negative (FN), Substitution, Correct True Positive
(cTP) and the overall Accuracy as percentages of the total ex-
periment time. (Substitution being defined as the misclassifica-
tion of one positive, non-NULL, class for another; and cTP as
the correctly classified positive class.) This summary informa-
tion is also shown, in barchart form, in Figure 4.

Continuous recognition systems which deal with human ac-
tivity are often characterised by the lack of fixed, well-defined
activity boundaries. In many cases, whether an activity was
recognised exactly within the labelled time frame, or slightly
off from it, is less important than the fact that the activity was
detected correctly in the first place. The confusion matrix based
evaluation as given does not account for such ’fuzzy’ bound-
aries, and makes a strict judgement on the predicted frames ac-
cording to the given ground truth.

If we lighten this restriction, we can create two additional
error classifications, which we call over f ill and under f ill, as
defined:
• Overfill time: when a continuous sequence of correct pre-

diction frames slips over the ground truth boundary to cover
NULL labelled frames (previously classed as insertion time)

• Underfill time: the time left when a continuous sequence
of correct prediction frames does not completely cover the
corresponding ground truth (previously classed as deletion
time)
Taking account of this, the total overfill and underfill, to-

gether with substitution, deletion, insertion, correct positive and
correct negatives times as a percentage of the overall experi-
ment, are shown in Figure 5. To mark the level of true insertion,
deletion and substitution errors, we introduce a ’serious error’
measure, as shown on the charts.

5. Discusion
As expected, the individual recognition performance for each of
the two sensor types performed quite poorly on their own, but
once combined the results improved dramatically.

As a percentage of the entire time, substitution errors de-
creased from a maximum of 9.3% by HMM on acceleration
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Figure 4: Breakdown of errors as a percentage of total experi-
ment time for acceleration, sound and combined: Correct Posi-
tive, Correct Negative, False Positive, False Negative and Sub-
stitution times, as taken directly from the confusion matrix

to as low as 0.6% in the basic Comparison method (and a re-
spectable 2.3% for LR).

The amount of false positives as a percentage of total time
fell to 14.9% for the Comparison method. LR, which although
having more (25.7%) false positives, is, however, the better
choice for fewer false negatives (6% LR, versus 14.4% for Com-
parison).

When underfill and overfill are considered, these results be-
gin to take on new meaning, as the more serious errors of inser-
tions and deletions prove to occur far less than the count of false
positives and false negatives might suggest. As a percentage of
the total time, the sum of insertion, deletion and substitution
errors is only around 7% for the Comparison and 9% for LR
methods.

As with any comparison between recognition systems, it
is unwise to make claims as to the absolute superiority of one
method over the other - the differences between basic Compar-
ison and LR should be highlighted in view of whatever perfor-
mance criteria is most important to the application. Some appli-
cations, safety monitoring of dangerous activities for example,
might regard a false negative error as being much worse than a
false positive. In which case the LR method as given might be
regarded preferable.

Additionally, the parameters which have for the purposes of
this paper been set to some ’optimal’ value, such as the NULL
thresholds on L(x) for LR, can alter the nature of these results
by raising or lowering the chance of returning a NULL. It is, for
example, possible to tailor the LR method to have exactly the
same performance as Comparison if one raises the threshold to
just under the L(x) value for matching top rank classifier results.
This ability means that although more complex to implement,
the LR is more versatile in terms of performance optimisation
than the basic comparison.

The purpose of this paper, however, is not to analyse the pe-
culiarities of each method in depth (one might use ROC curves
for this purpose), but rather to evaluate the feasibility of their
useage in discerning useful activities from NULL in a recogni-
tion task where two different sensor modalities, neither of which
can perform this task alone, are used.

5.1 Conclusion

Using only a single wrist worn unit containing two sensors - a
microphone and a 3-axis accelerometer - it is possible to per-
form gesture spotting for a certain subset of activities. Recog-
nition of activities is carried out for each sensor using standard
jumping window based approaches. Alone, neither sensor can
detect a NULL gesture, but when fused together, this becomes
possible.

Accel. Sound Comp. LR
0

1000

2000

3000

4000

5000

6000

7000

Method

T
im

e 
(s

ec
on

ds
)

9.3
0.0

10.2
19.5%

0.0

36.0

0.0

44.5

8.5
0.0

16.7

25.1%
0.0

29.5

0.0

45.3

0.6 3.9
2.8 7.2%

10.5

12.2

31.2

38.9

2.3 1.6
5.4 9.4%4.4

20.3

20.5

45.4

 Null activity = 46.2 % (2777.5 sec. / 6013.7 sec.) 
                                           

Subst. time
Deletion time
Insertion time
Underfill time
Overfill time
Cor. Neg. time
Cor. Pos. time
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Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 183.6 2.5 3.6 0.6 2.4 3.0 93.84

saw 306.4 3.7 209.9 69.7 3.9 4.0 15.2 0.1 68.50
file 304.6 0.6 40.3 248.3 1.9 8.0 0.3 4.9 0.2 81.52
drill 241.5 0.9 184.0 50.6 2.0 4.0 76.20
sand 313.0 0.7 3.3 40.5 6.3 228.2 2.7 29.6 1.8 72.91
grind 277.7 15.1 260.6 2.0 93.85

screwdr. 260.4 19.3 2.0 2.0 229.7 7.3 88.23
vise 678.1 65.2 28.5 0.4 11.4 4.6 543.4 24.6 80.14

drawer 658.8 8.2 30.3 10.9 7.4 12.0 590.1 89.57
NULL 2777.5 185.9 12.5 13.5 471.5 1.8 304.9 77.2 296.3 1413.9 0

Accel. Total: 6013.7 FN: 0.0 FP: 2777.5 Subst.: 558.2 cTP: 2678.0 cTP+TN: 2678.0
0.0% 46.2% 9.3% 44.5% Accuracy: 44.5%

Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 168.5 19.6 6.7 0.8 86.12

saw 306.4 267.2 14.0 2.0 10.5 12.7 87.21
file 304.6 238.8 34.4 1 16.1 2.5 2.8 78.40
drill 241.5 226.5 12.0 2.0 1.0 93.79
sand. 313.0 6.0 13.9 258.0 2.0 21.7 0.9 10.5 82.42
grind. 277.7 2.9 274.5 0.3 98.86

screwdr. 260.4 249.0 9.8 1.6 95.64
vise 678.1 0.3 101.8 571.2 4.8 84.24

drawer 658.8 0.7 163.6 22.7 471.8 71.61
NULL 2777.5 5.5 8.8 7.3 111.5 18.0 67.5 1360.8 506.4 691.7 0

Sound Total: 6013.7 FN: 0.0 FP: 2777.5 Subst.: 510.6 cTP: 2725.6 cTP+TN: 2725.6
0.0% 46.2% 8.5% 45.3% Accuracy: 45.3%

Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 168.5 0.6 1.3 0.8 24.5 86.12

saw 306.4 200.3 12.0 5.0 89.1 65.38
file 304.6 203.3 2.0 0.3 99.1 66.73
drill 241.5 169.0 72.5 69.99
sand. 313.0 194.6 1.1 0.9 116.4 62.16
grind. 277.7 259.5 18.2 93.45

screwdr. 260.4 225.7 34.6 86.70
vise 678.1 1.7 476.2 1.0 199.2 70.23

drawer 658.8 5.4 2.1 440 211.3 66.79
NULL 2777.5 3.5 1.7 2.7 83.0 1.4 50.5 67.2 126.1 562.2 1879.2 67.66

Comp. Total: 6013.7 FN: 864.9 FP: 898.3 Subst.: 34.1 cTP: 2337.1 cTP+TN: 4216.4
14.4% 14.9% 0.6% 38.9% Accuracy: 70.1%

Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 169.5 0.6 4.1 2.2 19.4 86.61

saw 306.4 254.3 22.0 9.4 0.1 20.6 83.00
file 304.6 4.0 262.2 12.0 0.3 3.1 0.2 22.9 86.07
drill 241.5 232.3 4.2 5.0 96.19
sand. 313.0 8.0 22.8 237.6 1.1 8.8 1.1 33.7 75.89
grind. 277.7 275.6 2.1 99.26

screwdr. 260.4 225.7 2.8 31.8 86.70
vise 678.1 0.3 1.7 566.7 17.7 91.7 83.58

drawer 658.8 5.4 8.1 508.5 136.8 77.19
NULL 2777.5 10.5 9.7 7.1 121.7 2.4 76.2 67.2 282.8 969.4 1230.6 44.30

LR Total: 6013.7 FN: 363.8 FP: 1546.9 Subst.: 139.9 cTP: 2732.5 cTP+TN: 3963.1
6.0% 25.7% 2.3% 45.4% Accuracy: 65.9%

Table 1: Confusion matrices for the acceleration and sound classifications, and the comparison (Comp.) and logistic regression (LR)
combinations, with jumping window of 2 seconds. The total % Correct is a summation of the class correct times over the total time.
All times are given in seconds. At the bottom of each matrix, a summary table gives times and percentages of false negative (FN),
false positive (FP), substitution (Subst.), correct true positive (cTP), and overall correct (cTP+cTN), corresponding to the information
in Figure 4.

It has been shown that this setup is particularly suited to
recognising assembly-type activities, involving use of hand ma-
nipulated machines and tools. Clearly, sound-acceleration com-
bination might not be useful for gestures which produce little or
no sound, such as in sign language. However, in applications
involving the use of hand-held objects which produce both mo-
tion and corresponding sound components these methods are
feasible.

In evaluating recognition performance, we introduce the
terms ’underfill’ and ’overfill’ to describe those common cases
in continuous recognition where events fail to completely match
the ground truth - but which might actually be judged correct by
a human observer - and show how these can be used to visualise
results. By discounting overfill and underfill errors, the lowest
error rates for the described system fall from around 30% to
7.2%.

A remaining issue, which is left here for future work, is
the influence of background noise on the sound recognition. It
is the belief of the authors that although this might be a limit-
ing factor, the careful selection and placement of microphones
should help mitigate the effects - especially for recognition of
dominant, loud activities such as hammering, or sawing.
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[1] Michael C. Büchler. Algorithms for Sound Classification

in Hearing Instruments. PhD thesis, ETH Zurich, 2002.
[2] B. Clarkson, N. Sawhney, and A. Pentland. Auditory con-

text awareness in wearable computing. In Workshop on
Perceptual User Interfaces, November 1998.

[3] R. Duda, P. Hart, and D. Stork. Pattern Classification,
Second Edition. Wiley, 2001.

[4] Tin Kam Ho, J.J. Hull, and S.N Srihari. Decision com-
bination in multiple classifier systems. In IEEE TPAMI,
volume 16, pages 66–75, Jan 1994.

[5] Holger Junker, Paul Lukowicz, and Gerhard Tröster. Con-
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